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Problem Statement

Let D cC RY be a d-dimensional domain with compact closure and a sufficiently smooth
boundary. We are interested in approximating the zero level set of a function f,

Lo:={xeD : f(x) :=E[#(x)] =0}

for some random function(s), f, : D — R, which can be evaluated pointwise with cost M,
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Lo:={xeD : f(x) :=E[#(x)] =0}

for some random function(s), fo - D — R, which can be evaluated pointwise with cost M.
For example, for any x € D, we can use iid samples {f()(x )},’V’:"l
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Problem Statement

Let D cC RY be a d-dimensional domain with compact closure and a sufficiently smooth
boundary. We are interested in approximating the zero level set of a function f,

Lo:={xeD : f(x) :=E[#(x)] =0}

for some random function(s), fo - D — R, which can be evaluated pointwise with cost M.
For example, for any x € D, we can use iid samples {f()(x )},’V’:‘v’1

1
_ (1
=W Zf’ (x).
i=1
In general, we assume the bound, e.g., 5 =1/2,

sup [ (60~ 7i9)"] " < om;

xeD

When o = 0, we have access to direct evaluation of f(x) at cost O(1).
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Assumption on f

We will use the following assumption: There exist some dg, pg > 0 such that for all 0 < b < dg
we have

p({x € D:[f(x)] < b}) < pob

where p is the d-dimensional Lebesgue measure.
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Assumption on f

We will use the following assumption: There exist some dg, pg > 0 such that for all 0 < b < dg
we have

p({x € D:[f(x)] < b}) < pob

where p is the d-dimensional Lebesgue measure.

This would follow by assuming that f is Lipschitz continuous, using the compactness of D
which imply that the level set Lo = {x € D : f(x) = 0} is a (d — 1)-rectifiable set.
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Functional approximation

Similar to!, our method is cell-based.
o For a fixed N, select N points in a cell O, say x7, ..., x5, deterministically,
@ evaluate the approximations Fg(le), . Fg(x'ﬁ,) Denote the vector PUf, = (i?g(x,D)),N:1

e Obtain an approximate function THP9f, = fZD via a known approximation (or
interpolation) scheme, T, on the N samples in [J.

Compute the union of zero level-sets of {#7}n.

1Chohong Min and Frédéric Gibou. “A second order accurate level set method on non-graded adaptive
Cartesian grids". In: Journal of Computational Physics 225.1 (2007), pp. 300-321.
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Functional approximation

Similar to!, our method is cell-based.

o For a fixed N, select N points in a cell O, say x7, ..., x5, deterministically,
@ evaluate the approximations fg(xlm), . Fg(x'ﬁ,) Denote the vector PUf, = (i?g(x,D)),N:1

e Obtain an approximate function THP9f, = fZD via a known approximation (or
interpolation) scheme, T, on the N samples in [J.

o Compute the union of zero level-sets of {f"}r.
Notation summary:
e f(-) is the exact expectation.
° fg() is the point approximation, evaluated on {x,-D f\’zl, e.g., each using M, samples.

° @D(-) is the functional approximation/interpolation on cell [J.

1Chohong Min and Frédéric Gibou. “A second order accurate level set method on non-graded adaptive
Cartesian grids". In: Journal of Computational Physics 225.1 (2007), pp. 300-321.
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Approximation error

For any /€ N U {0} a uniform refinement of D into a collection of uniform cells, Uy, each with
size hy o< 27¢, satisfies

1/p

Z/\f (TP dulx) | <chp

OeU,

for some (unknown) constant ¢ > 0 and and some known rate o > 0 associated with our
chosen approximation method.
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Approximation error

For any /€ N U {0} a uniform refinement of D into a collection of uniform cells, Uy, each with
size hy o< 27¢, satisfies

1/p

Z/\f (TP dulx) | <chp

OeU,

for some (unknown) constant ¢ > 0 and and some known rate o > 0 associated with our
chosen approximation method.

We also assume that TE : RVxd _, LP(O), for any ¢ € N and all O € Uy, is a bounded linear
operator and

> TPl e@n ey < Cw
OeU,
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Approximation error

Under the previous assumptions, we have that,

1/p
> [ e[| - 60| Jauta ) < chi+ Cum? < e,
Od

OeU,

for My ~ b, /"
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Decision variable

Define?

70|
hy

inf
o xeld
0p =

Instead of h{*, we can also use a posteriori error estimates for sharper bounds and better
constants.

2Abdul-Lateef Haji-Ali et al. “Adaptive Multilevel Monte Carlo for probabilities”. In: SIAM Journal on
Numerical Analysis 60.4 (2022), pp. 2125-2149.
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Adaptive Algorithm

Set Rg = Up; > Begin with a base uniform refinement
for € {0,...,0 —1} do > 6 is chosen to satisfy accuracy requirements
for each cell O in Ry of size hy do > Iterate over cells of the current level
if a, =0 then
Set 6% =0 > Always refine in this case
else
Evaluate f, at N points in [J; > e.g. using My hz_a/ﬂ samples

Fit the cell-based estimate @D on the sampled values of #;
Compute decision variable §%;

if SE < a; then
Refine [J into multiple cells of size hy, 1, and add them to R/11

else
Add O to Res1;

Return the union of {f;m}geygo zero level-sets. > The final level-set estimate
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An example: Drop-wave function

(1/5) = (1 +cos(12Ix[|2))/(IxlI3 /2 +2),  x € [-5,5]".
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Work definition

o Let W oc My h;a/ﬁ be the work required to approximate £~ on O € U,.
o Let R(O) be the collection of cells which result from a uniform refinement of the cell OJ.
o Assuming that |R(0J)| = 2¢ for all OJ, the work of such refinement at level £ is 2dhg_f1/’8.

o We define the (random) work of our method by the recursive formula, starting from Uy,

PIRAED DN T D C D DI e

OyeUy OyeUy OyeUy Oy+1€R(0y)
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Work definition

o Let W oc My h;a/ﬁ be the work required to approximate £~ on O € U,.
o Let R(O) be the collection of cells which result from a uniform refinement of the cell OJ.
2dp, /7.

o Assuming that |R(0)| = 2¢ for all O, the work of such refinement at level £ is 29h, ./

o We define the (random) work of our method by the recursive formula, starting from Uy,

oW e Y e ¢ Y te, Y Wiy

OyeUy OyeUy Oy€eUy Oy+1€R(0y)
< a/B—d d a/p
e S S,
OyeU,
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Bound on the number of cells (exact)

Recall: When £ is Lipschitz continuous, there exist some dg, pg > 0 such that for all 0 < b < dg
we have

pu({x € D:|f(x)] < b}) < pob

where p is the d-dimensional Lebesgue measure.
Let

50— infxen |F(X)]
L= pa
hg
A uniform grid, Uy of D into 29¢ cells of size hy = hy2~¢ satisfies for any
0<a< h; % — L29/2p;~,

Z HDE< < Z Sél[[l) ]I\f(x)|<aha <bh d—l—caho‘ d
Ueel, O,e Uy

for some constants b, ¢ > 0 independent of /.
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Bound on the number of cells (approximate)

A uniform grid, Uy of D into 2¢9 cells of size hy = hy2~* satisfies for any
0<a< h % — L29/2h;,

Z E[]ISEZSa] < Z £

OyeUy OpeUy

_ 1,—d _
gclh; d+c2h? " T+ cahy d

sup I 2oy i<, pe
el If ()1<a hg

for some constants ¢y, ¢2, c3 > 0 independent of /.

Here: 1, = ﬁ T 1
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Work bound

Therefore, the total expected work is bounded by

o 0
Z E[ Wﬁmﬂ ] < h;a/ﬁid +C 2d Z hl}ia/’g*d + o 2d Z h?lp—a/ﬁ—d
OyeUy =9 —0

0
+e32d Y agng e
=9
Assuming a geometric decrease of hy, and al, > 1, we take, for any 9,0 € N,
2 < O1 k <,
h,= k>4.
with 7 (5 +d) < 6(5 +d —1) , to have
Z E[WOD] _ Z E[WE] <N (h;(a/ﬁ-i-d) + Che—(a/ﬁ+d—1)) < Nhe—(a/ﬂ'i'd—l)
de Uy DEU,g

Haji-Ali (HWU) Adaptive Algorithm for Level-sets MCM 13 /19



Error definition

Define the two sets

Lin = {XGE‘ f(X)SO}

il {XED‘Q <0} 0= U Lhe
OeeU,

and consider a metric of the accuracy of our level-set estimation based on the symmetric
difference of the sets Li, and £f,, which we denote by L, A Lf .

Dy(x) =1, . Lin ALE

We define the error of our method starting from a uniform refinement Uy by the recursive
formula

O . O
I o N CILZCE VD WL IO o
Oy€eUy OyeUy Oy€eUy Oyr1€R(0y)
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Error expansion

Similar to the work, we arrive at

) E[qugf ) /D ZE[HSEZZQZAK(X)}C’#(X)

OyeUy k=9 0,eU,

> EL8()] (4

Oe€e Uy
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Error analysis for uniform refinement

Under LP bounds on the approximation error, we have that for any uniform refinement Uy, for
some constant c,

Hence if ap = 0 when £ < 9 and

0—1

—p aly
Z a," <ch,
(=19

we have

STEERI= Y E[EDﬁ]<czakP+ch < cpote
Oo€Uo Oye€Uy
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An example

Adapted from3, we consider a refinement criterion of the form

0 <

ay =
4 Ch?lp/R_ahglp(R_l)/Rh;alp/R (>0

where the parameter 1 < R < a1, determines the strictness of refinement (more strict as
R —1).

Set ¥ = ’79 (1 — ]I-;))-‘ , and hg = 0(5_1/(a1p))

then the adaptive/non-adaptive algorithms have computational complexities
O <5_<é+dwl)/lp> VS. O <€—<[§+Z>/1p>

3 Abdul-Lateef Haji-Ali et al. “Adaptive Multilevel Monte Carlo for probabilities”. In: SIAM Journal on
Numerical Analysis 60.4 (2022), pp. 2125-2149, Michael B Giles and Abdul-Lateef Haji-Ali. “Multilevel nested
simulation for efficient risk estimation”. In: SIAM/ASA Journal on Uncertainty Quantification 7.2 (2019),
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Numerical results: A circle
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Numerical results: A circle
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Conclusion

@ A simple adaptive sampling algorithm for level-set approximation;

@ The rate of growth of expected work involves, d — 1, the dimension of the level-set, rather
than d, the dimension of the ambient space.

@ Rate of expected error decrease is of the same as when using uniform refinement.
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Conclusion

@ A simple adaptive sampling algorithm for level-set approximation;

@ The rate of growth of expected work involves, d — 1, the dimension of the level-set, rather
than d, the dimension of the ambient space.

@ Rate of expected error decrease is of the same as when using uniform refinement.

Next (current) steps:

o Consider level-sets of Hausdorff dimension less that d — 1; work analysis is exactly the
same, the error metric is more tricky (Hausdorff dim. of L, and L, is less than d.).

@ Use Sparse Grids as the base refinement rather than uniform refinement — to get
dimension-independent convergence rates (in our results and in «). Requires sharper
bounds on cell counting, and a method with dimension-independent refinement factor.
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