Multilevel Path Branching for Digital Options

Abdul-Lateef Haji-Ali Joint work with Mike Giles (University of Oxford)

Heriot-Watt University

Uncertainty Quantification for Dynamical Modelling, Edinburgh 09 July 2025

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \le 1$

$$dX_t = a(X_t, t) dt + \sigma(X_t, t) dW_t.$$

Let $(\mathcal{F}_t)_{0 \leq t \leq 1}$ be the natural filtration of W_t .

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \le 1$

$$dX_t = a(X_t, t) dt + \sigma(X_t, t) dW_t.$$

Let $(\mathcal{F}_t)_{0 \le t \le 1}$ be the natural filtration of W_t .

We want to price a digital option of the form (dropping discounting)

$$P[X_1 \in S] = E[\mathbb{I}_{X_1 \in S}]$$

for some $S \subset \mathbb{R}^d$. Let $\{\overline{X}_{\ell,t}\}_{t=0}^1$ be an approximation of the path $\{X_t\}_{t=0}^1$ at level ℓ using $h_\ell^{-1} \equiv 2^\ell$ timesteps.

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \le 1$

$$dX_t = a(X_t, t) dt + \sigma(X_t, t) dW_t.$$

Let $(\mathcal{F}_t)_{0 \leq t \leq 1}$ be the natural filtration of W_t .

We want to price a digital option of the form (dropping discounting)

$$P[X_1 \in S] = E[\mathbb{I}_{X_1 \in S}]$$

for some $S \subset \mathbb{R}^d$. Let $\{\overline{X}_{\ell,t}\}_{t=0}^1$ be an approximation of the path $\{X_t\}_{t=0}^1$ at level ℓ using $h_\ell^{-1} \equiv 2^\ell$ timesteps.

For $|\mathsf{E}[\mathbb{I}_{X_1 \in S} - \mathbb{I}_{\overline{X}_{\ell,1} \in S}]| \lesssim h_\ell^{\alpha}$, a Monte Carlo estimator of $\mathsf{E}[\mathbb{I}_{X_1 \in S}]$ has computational complexity $\varepsilon^{-2-\alpha}$ to achieve MSE ε .

Multilevel Monte Carlo

Consider a hierarchy of corrections $\{\Delta P_\ell\}_{\ell=0}^L$ such that

$$\mathsf{E}[\,\Delta P_\ell\,] = \begin{cases} \mathsf{E}[\,\mathbb{I}_{\overline{X}_{0,1} \in S}\,] & \ell = 0 \\ \mathsf{E}[\,\mathbb{I}_{\overline{X}_{\ell,1} \in S} - \mathbb{I}_{\overline{X}_{\ell-1,1} \in S}\,] & \text{otherwise}. \end{cases}$$

MLMC can be formulated as

$$\mathsf{E}[\mathbb{I}_{X_1 \in \mathcal{S}}] = \sum_{\ell=0}^{\infty} \mathsf{E}[\Delta P_{\ell}] \approx \sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M_{\ell}} \Delta P_{\ell}^{(m)}$$

Multilevel Monte Carlo

Consider a hierarchy of corrections $\{\Delta P_\ell\}_{\ell=0}^L$ such that

$$\mathsf{E}[\,\Delta P_\ell\,] = \begin{cases} \mathsf{E}\big[\,\mathbb{I}_{\overline{X}_{0,1} \in S}\,\big] & \ell = 0 \\ \mathsf{E}\big[\,\mathbb{I}_{\overline{X}_{\ell,1} \in S} - \mathbb{I}_{\overline{X}_{\ell-1,1} \in S}\,\big] & \text{otherwise}. \end{cases}$$

MLMC can be formulated as

$$\mathsf{E}[\mathbb{I}_{X_1 \in \mathcal{S}}] = \sum_{\ell=0}^{\infty} \mathsf{E}[\Delta P_{\ell}] \approx \sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M_{\ell}} \Delta P_{\ell}^{(m)}$$

Assuming

$$\mathsf{Var}[\,\Delta P_\ell\,] \lesssim h_\ell^{\beta_\mathsf{d}}, \qquad \quad |\mathsf{E}[\,\Delta P_\ell\,]| \lesssim h_\ell^\alpha, \qquad \quad \mathsf{Work}(\Delta P_\ell) \lesssim h_\ell^{-1}$$

then to compute with MSE ε^2 the complexity of MLMC is $\mathcal{O}(\varepsilon^{-2-\max(1-\beta_d,0)/\alpha})$ when $\beta_d \neq 1$ and $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^2)$ otherwise.

Examples: Classical Method

Using
$$\Delta P_\ell = \mathbb{I}_{\overline{X}_{\ell,1}} - \mathbb{I}_{\overline{X}_{\ell-1,1}}$$
, note that $\mathrm{Var}[\Delta P_\ell] \lesssim h_\ell^{\beta_\mathrm{d}}$ is an implication of $\mathrm{E}\left[\left(\overline{X}_{\ell,1} - \overline{X}_{\ell-1,1}\right)^2\right]^{1/2} \approx \mathcal{O}(h_\ell^{\beta_\mathrm{d}})$.

- Euler-Maruyama has $\alpha=1$ and $\beta_{\rm d}\approx 1/2$ and complexity is $\mathcal{O}(\varepsilon^{-5/2})$ (Compare to $\mathcal{O}(\varepsilon^{-2}|\log\varepsilon|^2)$ for a Lipschitz payoff).
- Milstein has $\alpha=1$ and $\beta_{\rm d}\approx 1$ and complexity is $\mathcal{O}(\varepsilon^{-2}|\log\varepsilon|^2)$ (Compare to $\mathcal{O}(\varepsilon^{-2})$ for a Lipschitz payoff).
- Antithetic Milstein has the same rates as Euler-Maruyama (better rates possible with at least a Lipschitz payoff).

Conditional Expectation

For some
$$0 < \tau < 1$$
, let

$$\Delta Q_\ell \coloneqq \mathsf{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1- au}\,].$$
 Note $\mathsf{E}[\,\Delta Q_\ell\,] = \mathsf{E}[\,\Delta P_\ell\,].$

Conditional Expectation

For some $0 < \tau < 1$, let

$$\Delta Q_\ell \coloneqq \mathsf{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1- au}\,].$$
 Note $\mathsf{E}[\,\Delta Q_\ell\,] = \mathsf{E}[\,\Delta P_\ell\,].$

We can consider the MLMC estimator based on ΔQ_ℓ instead of ΔP_ℓ . The work and (hopefully improved) variance convergence of ΔQ_ℓ become relevant.

Computing ΔQ_{ℓ}

In 1D, taking $\tau \equiv h_\ell$ and using Euler-Maruyama for the last step we know that the conditional distribution of $\overline{X}_{\ell,1}$ given $\mathcal{F}_{1-\tau}$ is Gaussian and we can compute ΔQ_ℓ exactly.

Let
$$g(x) = \mathbb{E}\Big[\mathbb{I}_{\overline{X}_{\ell,1} \in S} \, \Big| \, \overline{X}_{\ell,1-\tau} = x \Big]$$
, then (roughly)
$$\mathbb{E}[\Delta Q_\ell^2] \approx \mathbb{E}\Big[\left(g(\overline{X}_{\ell,1-\tau}) - g(\overline{X}_{\ell-1,1-\tau})\right)^2\Big]$$

$$\lesssim \mathbb{E}\Big[\left(g'(\overline{X}_{\ell,1-\tau})\right)^2 \, \Big| \, \overline{X}_{\ell,1-\tau} - \overline{X}_{\ell-1,1-\tau}\Big|^2\Big] + \dots$$

$$\lesssim \mathcal{O}\Big(h_\ell^{1/2} \, (h_\ell^{-1/2})^2 \, h_\ell^{2\beta_{\rm d}}\Big) = \mathcal{O}(h_\ell^{-1/2+2\beta_{\rm d}})$$

Examples: Conditional Expectations

- Euler-Maruyama has $2\beta_{\rm d}=1$, hence ${\rm Var}[\,\Delta Q_\ell\,]\approx \mathcal{O}(h_\ell^{1/2})$. Using the Conditional expectation does not offer an advantage over the classical method.
- Milstein has $2\beta_{\rm d}=2$, hence ${\sf Var}[\Delta Q_\ell]\approx h_\ell^{3/2}$ and complexity is $\mathcal{O}(\varepsilon^{-2})$.
- Antithetic Milstein estimator has similar complexity to Euler-Maruyama. We do have $2\beta_{\rm d}=2$ but would involve the second derivative ${\sf E}[(g'')^2]\propto h_\ell^{-3/2}$.

Path splitting to estimate ΔQ_ℓ

More generally, for any method and any τ , we can use path splitting (Monte Carlo) with sufficient number of samples, leading to increased work.

See, e.g., Glasserman (2004) and Burgos & Giles (2012) for more information on this method (for computing options and sensitivities).

• When $\tau \to 0$, i.e., splitting late,

$$\mathsf{Var}[\,\Delta \mathit{Q}_{\ell}\,] \leq \mathsf{E}\big[\,(\mathsf{E}[\,\Delta \mathit{P}_{\ell}\,|\,\mathcal{F}_{1-\tau}\,])^2\,\big] = \mathsf{E}\big[\,(\Delta \mathit{P}_{\ell})^2\,\big] = \mathcal{O}(\mathit{h}_{\ell}^{\beta_{\mathsf{d}}})$$

leads to worse variance.

ullet When au o 1, i.e., splitting early,

$$\mathsf{Var}[\,\Delta \mathit{Q}_{\ell}\,] \leq \mathsf{E}\!\left[\,(\mathsf{E}[\,\Delta \mathit{P}_{\ell}\,|\,\mathcal{F}_{1-\tau}\,])^{2}\,\right] = (\mathsf{E}[\,\Delta \mathit{P}_{\ell}\,])^{2} = \mathcal{O}(\mathit{h}_{\ell}^{2\beta_{\mathsf{d}}})$$

leads to worse work.

Solution: More splitting

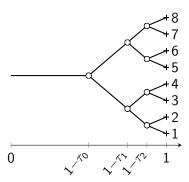
For
$$\tau' > \tau$$

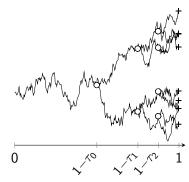
$$\begin{split} \Delta \mathcal{Q}'_\ell &\coloneqq \mathsf{E}[\,\Delta \mathcal{Q}_\ell \,|\, \mathcal{F}_{1-\tau'}\,] \\ &= \mathsf{E}[\,\mathsf{E}[\,\Delta P_\ell \,|\, \mathcal{F}_{1-\tau}\,] \,|\, \mathcal{F}_{1-\tau'}\,] \end{split}$$
 Again
$$\mathsf{E}[\,\Delta \mathcal{Q}'_\ell\,] &= \mathsf{E}[\,\Delta P_\ell\,] \end{split}$$

Now we have finer control over au, au' and the number of samples we can use to compute the two expectations.

Path Branching

- Let $1 \tau_{\ell'} = 1 2^{-\ell'}$ for $\ell' \in \{1, \dots, \ell\}$.
- For every ℓ' , starting from $X_{1-\tau_{\ell'}}$ at time $1-\tau_{\ell'}$, create two sample paths $\{X_t\}_{1-\tau_{\ell'}\leq t\leq 1-\tau_{\ell'+1}}$ which depend on two independent samples of the Brownian motion $\{W_t\}_{1-\tau_{\ell'}\leq t\leq 1-\tau_{\ell'+1}}$.
- ullet Evaluate the payoff difference $\Delta P_\ell^{(i)}$ for every $X_1^{(i)}$ for $i\in\{1,\ldots,2^\ell\}$
- Define the Monte Carlo average as $\Delta \mathcal{P}_{\ell} \coloneqq 2^{-\ell} \sum_{i=1}^{2^{\ell}} \Delta \mathcal{P}_{\ell}^{(i)}$





Main Assumptions & Bounds

Another way to see this: We have 2^{ℓ} extra samples. Cost (identical paths would be too correlated)? Correlation (independent paths would be too costly)?

Main Assumptions & Bounds

Another way to see this: We have 2^{ℓ} extra samples. Cost (identical paths would be too correlated)? Correlation (independent paths would be too costly)?

Assumption

Assume that there exists $eta_{
m d}, eta_{
m c}, p>0$ such that for all $au>h_\ell$

$$\mathsf{E}[\,(\Delta P_\ell)^2\,] \lesssim h_\ell^{eta_\mathsf{d}}$$

and

$$\mathsf{E}\big[\left(\mathsf{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1-\tau}\,]\right)^2\,\big]\lesssim \frac{h_\ell^{\beta_\mathrm{c}}}{\tau^{1/2}}$$

Theorem (Work/Variance bounds)

$$egin{aligned} \mathsf{E}[\,\Delta\mathcal{P}_\ell\,] &= \mathsf{E}[\,\Delta\mathcal{P}_\ell\,] \ \mathsf{Work}(\Delta\mathcal{P}_\ell) &\lesssim \,\ell\,h_\ell^{-1} \ \mathsf{Var}[\,\Delta\mathcal{P}_\ell\,] &\lesssim \,h_\ell^{eta_\mathrm{d}+1} + h_\ell^{eta_\mathrm{c}} \end{aligned}$$

Proof

Recall $\tau_{\ell'} = 2^{-\ell'}$

$$\begin{aligned} & \mathsf{Work}(\Delta \mathcal{P}_{\ell}) \leq h_{\ell}^{-1} \left((1 - \tau_0) + \sum_{\ell'=1}^{\ell-1} 2^{\ell'} (\tau_{\ell'-1} - \tau_{\ell'}) + 2^{\ell} \tau_{\ell} \right) \\ & \lesssim \ell \, h_{\ell}^{-1} \\ & \mathsf{Var}[\Delta \mathcal{P}_{\ell}] \leq \mathsf{E} \left[\left(\frac{1}{2^{\ell}} \sum_{i=1}^{2^{\ell}} \Delta \mathcal{P}_{\ell}^{(i)} \right)^{2} \right] \\ & \leq \frac{1}{2^{\ell}} \mathsf{E}[\Delta \mathcal{P}_{\ell}^{2}] + \frac{1}{2^{2\ell}} \sum_{i=1}^{2^{\ell}} \sum_{j=1, i \neq j}^{2^{\ell}} \mathsf{E}[\Delta \mathcal{P}_{\ell}^{(i)} \Delta \mathcal{P}_{\ell}^{(j)}] \end{aligned}$$

$$\leq \frac{1}{2^{\ell}}\mathsf{E}[\,\Delta P_{\ell}^2\,] + \frac{1}{2^{2\ell}} \sum_{i=1}^{2^{\ell}} \sum_{j=1, i \neq j}^{2^{\ell}} \mathsf{E}[\,(\mathsf{E}[\,\Delta P_{\ell}\,|\,\mathcal{F}_{1-\tau^{(i,j)}}\,])^2\,]$$

Examples: Path Branching

- Euler-Maruyama has $\beta_{\rm d} \approx 1/2$ and $\beta_{\rm c} \approx 1$ hence ${\rm Var}[\Delta \mathcal{P}_\ell] \approx \mathcal{O}(h_\ell)$. The complexity is $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^3)$ (Compare to $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^2)$ for a Lipschitz payoff).
- Milstein has $\beta_{\rm d} \approx 1$ and $\beta_{\rm c} \approx 2$ hence ${\sf Var}[\Delta \mathcal{P}_\ell] \approx \mathcal{O}(h_\ell^2)$ and complexity is $\mathcal{O}(\varepsilon^{-2})$ (Same as for a Lipschitz payoff).
- Antithetic Milstein estimator has better rates than Euler-Maruyama! Different analysis shows $\mathrm{Var}[\Delta\mathcal{P}_\ell] \approx \mathcal{O}(h_\ell^{3/2})$ hence complexity is $\mathcal{O}(\varepsilon^{-2})$ (Same as for a Lipschitz payoff).

Simplified Assumptions on SDE solution/Approximation

Theorem (Based on SDE solution and approximation)

Assume that for some $\delta_0>0$ and all $0<\delta\leq\delta_0$ and $0<\tau\leq1$, and letting $d_{\partial S}(x)=\min_{y\in\partial S}\|x-y\|$, there is a constant C independent of δ,τ and $\mathcal{F}_{1-\tau}$ such that

$$\mathsf{E}\Big[\left(\mathsf{P}[\,d_{\partial S}(X_1)\leq \delta\,|\,\mathcal{F}_{1-\tau}\,]\right)^2\Big]\leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

Assume additionally that there is q>2 and $\beta>0$ such that

$$\mathsf{E}\Big[\left(X_1-\overline{X}_{\ell,1}
ight)^q\Big]^{1/q}\lesssim h_\ell^{eta/2}$$

$$\text{Then} \quad \beta_{\mathsf{d}} = \frac{\beta}{2} \times \left(1 - \frac{1}{q+1}\right) \qquad \text{and} \qquad \beta_{\mathsf{c}} = \beta \times \left(1 - \frac{2}{q+2}\right)$$

MLMC Complexity

When q is arbitrary,

$$\beta_{\mathsf{d}} pprox rac{eta}{2} \qquad \mathsf{and} \qquad eta_{\mathsf{c}} pprox eta$$

and for $\beta \leq 2$

$$\mathsf{Var}[\,\Delta\mathcal{P}_\ell\,] pprox \mathcal{O}(\mathit{h}_\ell^eta)$$
 $\mathsf{Work}(\Delta\mathcal{P}_\ell) = \mathcal{O}(\ell\mathit{h}_\ell^{-1})$

- Using Euler-Maryama: $\beta=1$ and the MLMC computational complexity is approximately $o(\varepsilon^{-2-\nu})$ for any $\nu>0$ and for MSE ε .
- Using Milstein: $\beta=2$ and the complexity is $\mathcal{O}(\varepsilon^{-2})$.

SDEs with Gaussian Transition Kernels

Lemma

Assume that the SDE is uniformly elliptic and that $a, \sigma \sigma^T \in C_b^{\lambda,0}$ for some $\lambda \in (0,1)$ and let $\{X_t\}_{t \in [0,1]}$ satisfy the SDE. Assume that $K \equiv \partial S$ is "nice" then there is C > 0 such that

$$\mathsf{E}\Big[\left(\mathsf{P}[\,d_{\mathcal{K}}(X_1)\leq\delta\,|\,\mathcal{F}_{1-\tau}\,]\right)^2\,\Big]\leq C\,\frac{\delta^2}{\tau^{1/2}}$$

SDEs with Gaussian Transition Kernels

Lemma

Assume that the SDE is uniformly elliptic and that $a, \sigma \sigma^T \in C_b^{\lambda,0}$ for some $\lambda \in (0,1)$ and let $\{X_t\}_{t \in [0,1]}$ satisfy the SDE. Assume that $K \equiv \partial S$ is "nice" then there is C > 0 such that

$$\mathsf{E}\Big[\left(\mathsf{P}[\,d_{\mathsf{K}}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}$$

$$\mathsf{E}\Big[\left(\mathsf{P}[\,d_{\mathsf{exp}\,\mathsf{K}}(\mathsf{exp}\,X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

SDEs with Gaussian Transition Kernels

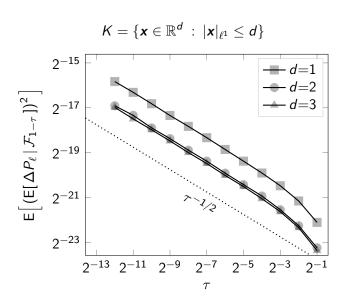
Lemma

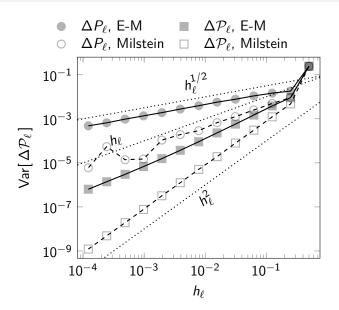
Assume that the SDE is uniformly elliptic and that $a, \sigma \sigma^T \in C_b^{\lambda,0}$ for some $\lambda \in (0,1)$ and let $\{X_t\}_{t \in [0,1]}$ satisfy the SDE. Assume that $K \equiv \partial S$ is "nice" then there is C > 0 such that

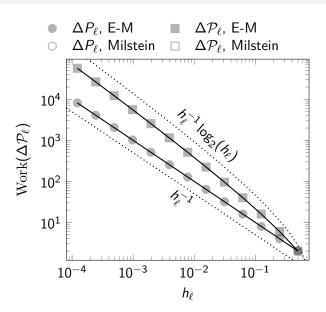
$$\mathsf{E}\Big[\left(\mathsf{P}[\, d_{\mathcal{K}}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,] \right)^2 \,\Big] \leq C \, \frac{\delta^2}{\tau^{1/2}}$$
 and
$$\mathsf{E}\Big[\left(\mathsf{P}[\, d_{\mathsf{exp}\,\mathcal{K}}(\mathsf{exp}\,X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,] \right)^2 \,\Big] \leq C \, \frac{\delta^2}{\tau^{1/2}}.$$

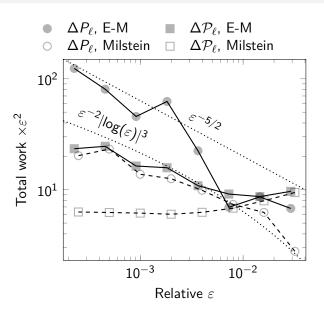
Proof. Based on bounding the conditional density of X_1 by a Gaussian density. E.g.

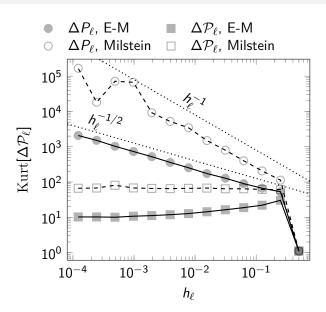
$$\mathsf{E}\Big[\left(\mathsf{P}[\,d_{\mathcal{K}}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \\
\lesssim \frac{1}{\tau^{1/2}} \left(\int_{-\delta}^{\delta} \,\mathrm{d}x\right) \times \mathsf{E}[\,\mathsf{P}[\,d_{\mathcal{K}}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\,] \lesssim \frac{\delta^2}{\tau^{1/2}}$$











For the Clark-Cameron SDE ($\mathrm{d}X_t = W_{1,t}\,\mathrm{d}W_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

For the Clark-Cameron SDE ($\mathrm{d}X_t = W_{1,t}\,\mathrm{d}W_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy area set to zero). Applying to digital options we set

$$\Delta P_{\ell} = \begin{cases} \mathbb{I}_{\overline{X}_{\ell,1} \in \mathcal{S}} & \ell = 0\\ \frac{1}{2} \left(\mathbb{I}_{\overline{X}_{\ell,1} \in \mathcal{S}} + \mathbb{I}_{\overline{X}_{\ell,1}^{(a)} \in \mathcal{S}} \right) - \mathbb{I}_{\overline{X}_{\ell-1,1} \in \mathcal{S}} & \ell > 0 \end{cases}$$

where $\overline{X}_{\ell,1}$ and $\overline{X}_{\ell,1}^{(a)}$ are an identically distributed antithetic pair.

For the Clark-Cameron SDE ($\mathrm{d}X_t = W_{1,t}\,\mathrm{d}W_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy area set to zero). Applying to digital options we set

$$\Delta P_{\ell} = \begin{cases} \mathbb{I}_{\overline{X}_{\ell,1} \in \mathcal{S}} & \ell = 0\\ \frac{1}{2} \left(\mathbb{I}_{\overline{X}_{\ell,1} \in \mathcal{S}} + \mathbb{I}_{\overline{X}_{\ell,1}^{(a)} \in \mathcal{S}} \right) - \mathbb{I}_{\overline{X}_{\ell-1,1} \in \mathcal{S}} & \ell > 0 \end{cases}$$

where $\overline{X}_{\ell,1}$ and $\overline{X}_{\ell,1}^{(a)}$ are an identically distributed antithetic pair.

We have for all q > 2

$$\begin{split} \mathsf{E}\Big[\left\|X_1-\overline{X}_{\ell,1}\right\|^q\Big]^{^{1/q}} &\leq C \; h_\ell^{^{1/2}} \\ \mathrm{and} \qquad \mathsf{E}\Big[\left\|\frac{1}{2}(\overline{X}_{\ell,1}+\overline{X}_{\ell,1}^{(a)})-\overline{X}_{\ell-1,1}\right\|^q\Big]^{^{1/q}} &\leq C \; h_\ell. \end{split}$$

Lemma (Antithetic rates)

Assume that the SDE is uniformly elliptic and that $a, \sigma \sigma^T \in C_b^{2,0}$ and let $\{X_t\}_{t \in [0,1]}$ satisfy the SDE. Then for

$$\Delta P_\ell = \frac{1}{2} \bigg(\mathbb{I}_{\overline{X}_{\ell,1}} + \mathbb{I}_{\overline{X}_{\ell,1}^{(a)}} \bigg) - \mathbb{I}_{\overline{X}_{\ell-1,1}}$$

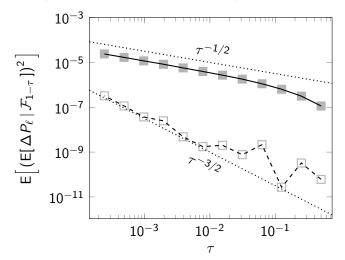
we have
$$\mathsf{E}[\,(\Delta P_\ell)^2\,] \lesssim h_\ell^{1/2(1-1/(q+1))}$$
 and
$$\mathsf{E}\big[\,(\mathsf{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1-\tau}\,])^2\,\big] \lesssim h_\ell^{2(1-5/(q+5))}/\tau^{3/2}.$$

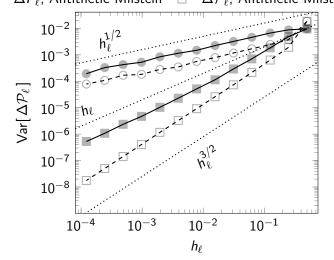
In other words

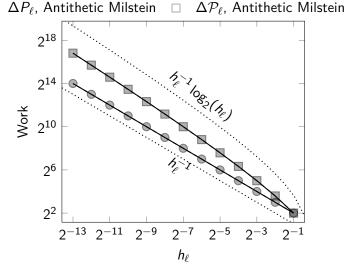
$$eta_{\mathsf{d}} = rac{1}{2} imes \left(1 - rac{1}{q+1}
ight) \qquad ext{and} \qquad eta_{\mathsf{c}} = 2 imes \left(1 - rac{5}{q+5}
ight).$$

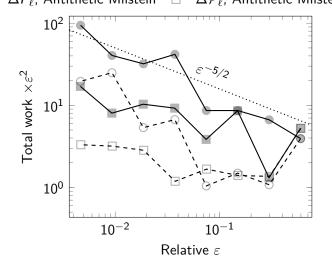
When q is arbitrary, we show that for any $\nu>0$ that ${\sf Var}[\Delta\mathcal{P}_\ell]\lesssim h_\ell^{3/2-\nu}$.

- lacktriangledown ΔP_ℓ , E-M
- \bigcirc $\triangle P_{\ell}$, Antithetic Milstein \square $\triangle P_{\ell}$, Antithetic Milstein

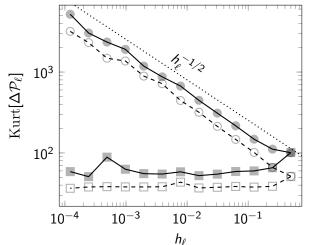








- lacktriangledown ΔP_ℓ , E-M
- \bigcirc $\triangle P_{\ell}$, Antithetic Milstein \square $\triangle P_{\ell}$, Antithetic Milstein



What's done

M. B. Giles and A.-L. Haji-Ali. "Multilevel Path Branching for Digital Options". In: *Annals of Applied Probability* 34.5 (2024), pp. 4836–4862. ISSN: 1050-5164. DOI: 10.1214/24-AAP2083.

• We also consider a sequence $\tau_{\ell'}=2^{-\eta\ell'}$ for some $\eta>0$. For $\eta>1$, this reduces the work of $\Delta\mathcal{P}_{\ell}$ to $\mathcal{O}(2^{\ell})$.

 More theoretical and numerical analysis for antithetic estimators (including bounding the variance and the Kurtosis).

Future work

- Computing sensitivities: Using bumping, the variance increases as the bump distance decreases. Branching can help.
- Pricing other options (Barrier); not clear extension, combine with adaptive splitting?
- Particle systems and Multi-index Monte Carlo.
- Approximate CDFs.
- Parabolic SPDEs with MLMC or MIMC. Method extends naturally, but analysis could be more challenging.

Elliptic SDEs

Definiton ((Si) sets)

We say that a set $K \subset \mathbb{R}^d$ is an (Si) set if there exists an index j Lipschitz function f such that

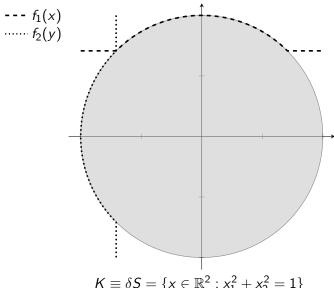
$$K = \{x \in \mathbb{R}^d : x_j = f(x_{-j})\}.$$

Lemma

For $S \subset \mathbb{R}^d$ assume that $K \equiv \partial S \subseteq \bigcup_{j=1}^n K_j$ for some finite n and (Si) sets $\{K_j\}_{j=1}^n$. Assume that the SDE is uniformly elliptic and that $a, \sigma \sigma^T \in C_b^{\lambda,0}$ for some $\lambda \in (0,1)$ and let $\{X_t\}_{t \in [0,1]}$ satisfy the SDE then

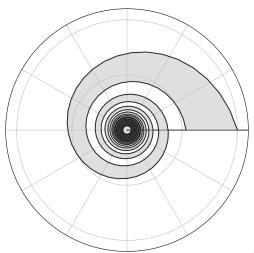
$$\mathsf{E}\big[\left(\mathsf{P}[\,d_{\mathsf{K}}(X_1)\leq\delta\,|\,\mathcal{F}_{1-\tau}\,]\right)^2\,\big]\leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

A nice set



$$K \equiv \delta S = \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$$

A not-so-nice set



$$K \equiv \partial S = \{(r,\theta) \in \mathbb{R}_+ \times [0,2\pi] : r = (n+\theta/\pi)^{-\frac{1}{2}}, n \in \mathbb{N}\}$$

Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion $Y_t = \exp(X_t)$?

$$dY_t = aY_t dt + \sigma Y_t dW_t$$
$$dX_t = adt + \sigma dW_t$$

Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion $Y_t = \exp(X_t)$?

$$dY_t = aY_t dt + \sigma Y_t dW_t$$
$$dX_t = a dt + \sigma dW_t$$

Lemma

For $S \subset \mathbb{R}^d$ assume that $K \equiv \partial S \subseteq \bigcup_{j=1}^n \exp(S_j)$ for some finite n and (Si) sets $\{S_j\}_{j=1}^n$. Assume that the SDE is uniformly elliptic and that $a, \sigma \sigma^T \in C_b^{\lambda,0}$ for some $\lambda \in (0,1)$ and let $\{X_t\}_{t \in [0,1]}$ satisfy the SDE then

$$\mathsf{E}\Big[\left(\mathsf{P}[\,d_{\mathcal{K}}(\mathsf{exp}(X_1)) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$