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The problem: Pricing a Digital option

Let X; be a d-dimensional stochastic process satisfying the SDE for
0<t<l1
dXt = a(Xt, t) dt + O'(Xt, t) th

Let (Ft)o<t<1 be the natural filtration of W;.
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The problem: Pricing a Digital option

Let X; be a d-dimensional stochastic process satisfying the SDE for
0<t<l1
dXt = a(Xt, t) dt + O'(Xt, t) th

Let (Ft)o<t<1 be the natural filtration of W;.
We want to price a digital option of the form (dropping discounting)
P[Xl € 5] = E[]lees]

for some S C RY. Let {X,}}_, be an approximation of the path {X:}1_,
at level ¢ using he_l = 2¢ timesteps.
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The problem: Pricing a Digital option

Let X; be a d-dimensional stochastic process satisfying the SDE for
0<t<l1
dXt = a(Xt, t) dt + O'(Xt, t) th

Let (Ft)o<t<1 be the natural filtration of W;.

We want to price a digital option of the form (dropping discounting)
P[Xl € 5] = E[]lees]

for some S C RY. Let {X,}}_, be an approximation of the path {X:}1_,
at level ¢ using h[l = 2¢ timesteps.

For [E[Ixes — Iy, sl < h{', a Monte Carlo estimator of E[Ix,es] has
computational complexity e 72~ to achieve MSE «¢.
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Multilevel Monte Carlo

Consider a hierarchy of corrections {APg}éZO such that

E[Tg,,es) (=0

EUIY@JES — ]IY(71’1€5] otherwise.

E[APg]:{

MLMC can be formulated as

[e%s) L M,

1 m

Ellxes] =Y E[AP] =30 40 3 AP
=0 (=0 =1
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Multilevel Monte Carlo

Consider a hierarchy of corrections {AP@}%ZO such that

E[AP] = Bl I, es] £=0
E []IYZJES — ]IYZ7171€5 ] otherwise.

MLMC can be formulated as

[e%s) L M,
1 m
ElIxes] = Y E[AP]~ Y — > AP(™
(=0 =0 """t m=1
Assuming
Var[APy] < hgﬁd, |[E[AP/]| < h7, Work(APy) < hzl

then to compute with MSE £? the complexity of MLMC is
O(e=2~max(1=Ba.0)/e) when By # 1 and O(c2?|log|?) otherwise.
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Examples: Classical Method

Using APy = ]IXe L Hyé—l,l' note that Var[AP;] < hfd is an implication

— — 27" s
of E[(Xm ~ X 11) } ~ O(h).

o Euler-Maruyama has o = 1 and 34 ~ 1/2 and complexity is O(c /)
(Compare to O(e~2|loge|?) for a Lipschitz payoff).

e Milstein has o = 1 and B4 ~ 1 and complexity is O(c~2|log £|?)
(Compare to O(e72) for a Lipschitz payoff).

@ Antithetic Milstein has the same rates as Euler-Maruyama (better
rates possible with at least a Lipschitz payoff).
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Conditional Expectation

For some 0 < 7 < 1, let

AQy = E[AP€|]:177]'
Note  E[AQ]= E[AP].
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Conditional Expectation

For some 0 < 7 < 1, let

AQy = E[APg‘f'i,T].
Note  E[AQ]= E[AP].

We can consider the MLMC estimator based on AQy instead of AP,. The
work and (hopefully improved) variance convergence of AQ; become
relevant.
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Computing AQy

In 1D, taking 7 = hy and using Euler-Maruyama for the last step we know
that the conditional distribution of X, ; given F;_ is Gaussian and we
can compute Ay exactly.

Let g(x) = E[HYMES ‘Ym_T = x}, then (roughly)

E[AQ?] ~ E{ (g(qu) - g(Xel,lT))T

).

S E{(g/(xe,l—r))2 ‘Y&l—ﬂ- - Yz—u—T

Ok (h,")? K%)= O(h, %)

AN
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Examples: Conditional Expectations

e Euler-Maruyama has 234 = 1, hence Var[AQy] = O(hzh). Using the
Conditional expectation does not offer an advantage over the classical
method.

@ Milstein has 254 = 2, hence Var[AQ,] =~ hz/z and complexity is
O(e72?).

@ Antithetic Milstein estimator has similar complexity to
Euler-Maruyama. We do have 234 = 2 but would involve the second

derivative E[ (g”)?] h;/z.
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Path splitting to estimate AQy

More generally, for any method and any 7, we can use path splitting

(Monte Carlo) with sufficient number of samples, leading to increased
work.

See, e.g., Glasserman (2004) and Burgos & Giles (2012) for more
information on this method (for computing options and sensitivities).

@ When 7 — 0, i.e., splitting late,

varl20r] < [ €[ a72|71-71)?] = €[ (4R ] = 0047

leads to worse variance.

© When 7 — 1, i.e., splitting early,

Var[AQ] < E[(E[AP | 1, ]| = (E[AP))? = O(r ™)

leads to worse work.
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Solution: More splitting

For 7’ >

AQ) =E[AQ|F1+]
— E[E[AP| Fir ]| Firr]
Again E[AQ;] = E[AP]

Now we have finer control over 7, 7" and the number of samples we can
use to compute the two expectations.
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Path Branching

oletl—rmp=1-2"forl e{1,...,0}.

@ For every /', starting from X1-r,, at time 1 — 7y, create two sample
paths {Xt}l—q/gtgl—qlﬂ which depend on two independent samples
of the Brownian motion {Wt}l,Té,Stgl,Té,H.

o Evaluate the payoff difference APlgi) for every Xl(i) for i € {1,...,2%}

o Define the Monte Carlo average as AP, == 2" Z?il APéi)

R NWS OO N

0 N AN | 0 KO SN |
N N N N4 NN
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Main Assumptions & Bounds

Another way to see this: We have 2 extra samples. Cost (identical paths

would be too correlated)? Correlation (independent paths would be too
costly)?
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Main Assumptions & Bounds

Another way to see this: We have 2 extra samples. Cost (identical paths

would be too correlated)? Correlation (independent paths would be too
costly)?

Assume that there exists Sq, B¢, p > 0 such that for all 7 > h
E[(AP)?] S !

and  E[(E[AP/| Fi+])°] S s

~ 7_1/2

Theorem (Work/Variance bounds)
E[AP¢] = E[AP]
Work(AP,) < € hyt
Var[ AP ] < htE 4 e

v
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Proof

Recall 7 = 2~¢

/-1
Work(AP;) < h;! ((1 —10)+ Y 2 (rp_1 — o) + 2%)

8
=1 (75
Sehgt 5
4
3
1 2 (i) ’ %
Var[AP;] <E ?ZAPK 0 o oo 1
i=1 ,\// ,\,/\/
1 2t 2f 0) ¢
E[APZ]+2%Z S E[aPPapY]
i=1j=1,i#j
1 2t 2f
< SEAPR+ 23" 3 EI(EIAPF 0]
i=1j=1,i#j
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Examples: Path Branching

e Euler-Maruyama has 4 &~ 1/2 and (. ~ 1 hence Var[ AP;| =~ O(hy).
The complexity is O(c~2|loge|®) (Compare to O(c?|loge|?) for a
Lipschitz payoff).

e Milstein has 34 ~ 1 and 3 ~ 2 hence Var[ AP, ] ~ O(h?) and
complexity is O(¢~2) (Same as for a Lipschitz payoff).

@ Antithetic Milstein estimator has better rates than Euler-Maruyama!
Different analysis shows Var[ AP, ] ~ O(hg/z) hence complexity is
O(£72) (Same as for a Lipschitz payoff).
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Simplified Assumptions on SDE solution /Approximation

Theorem (Based on SDE solution and approximation)

Assume that for some 69 > 0 and all 0 < 6 < dg and 0 < 7 < 1, and

letting dps(x) = minycps||x — y||, there is a constant C independent of
6,7 and F1_, such that

E[ (PLes(0) < 61 7, ])?] < € 2

Assume additionally that there is ¢ > 2 and > 0 such that

e[ (%) 5

Then Bd:§><<1—q_1|_1> and Bc:Bx(l—qi2>
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MLMC Complexity

When q is arbitrary,

B ~

B ~
5 and Be= B

and for B <2
Var[ AP, ] ~ O(h))

Work(AP,) = O(¢h, 1)

@ Using Euler-Maryama: 8 = 1 and the MLMC computational
complexity is approximately o(¢~27¥) for any v > 0 and for MSE «¢.

e Using Milstein: 3 = 2 and the complexity is O(e72).
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SDEs with Gaussian Transition Kernels

Assume that the SDE is uniformly elliptic and that a,co” € C;"O for some
A €(0,1) and let {X:}iejo,1) satisfy the SDE. Assume that K = 0S is
“nice” then there is C > 0 such that

52

E[(Pldk(X1) <[ A, ]] < C —

Haji-Ali (HWU) Multilevel Path Branching UQDM, 09 July 2025 16 /22



SDEs with Gaussian Transition Kernels

Assume that the SDE is uniformly elliptic and that a,co” € C;"O for some
A €(0,1) and let {X:}iejo,1) satisfy the SDE. Assume that K = 0S is
“nice” then there is C > 0 such that

52

=y

52

vt

E[(P[dK(Xl) < 5|]:1—r])2] <C

and  E[(Pldepk(expXa) <O Fi-]?] < C
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SDEs with Gaussian Transition Kernels

Assume that the SDE is uniformly elliptic and that a,co” € Cg"o for some
A €(0,1) and let {X:}iejo,1) satisfy the SDE. Assume that K = 0S is
“nice” then there is C > 0 such that

52
52

E[(P[dK(Xl) < 5|f177])2] <C

and  E[(Pldepk(expXa) <O Fi-]?] < C

Proof. Based on bounding the conditional density of X; by a Gaussian
density. E.g.

E| (Pldk(X1) <3| Fir])?]

1 ([ 52
S [ ax) <EPLakO) <8171 S 55
2\ J=s T/
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Numerical Results on GBM

K={xeR?: |x|p <d}
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Numerical Results on GBM

© APy, E-M 0 APy, EEM
APy, Milstein APy, Milstein
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Numerical Results on GBM

o AP, E-M = APy, E-M
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Numerical Results on GBM
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Numerical Results on GBM

© APy, E-M 0 APy, EEM
APy, Milstein APy, Milstein
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Antithetic estimator

For the Clark-Cameron SDE (dX; = W ;dWha ), using a Milstein scheme
requires sampling Lévy areas.
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Antithetic estimator

For the Clark-Cameron SDE (dX; = W ;dWha ), using a Milstein scheme
requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy
area set to zero). Applying to digital options we set

AP[— ques EZO
(]IX41€5 + ]I ES) - ]IYZ—I,IES e > O

where X“ and X( ) are an identically distributed antithetic pair.
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Antithetic estimator

For the Clark-Cameron SDE (dX; = W ;dWha ), using a Milstein scheme
requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy
area set to zero). Applying to digital options we set

L (=0
(sz,les t Hiﬁ‘?{es) Iz, s €>0

where X“ and X( ) are an identically distributed antithetic pair.

We have for all g > 2
- xT < o

w@y |97
and |:H (le—l-X )_Xé—l,l } < C hy.
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Antithetic estimator

Lemma (Antithetic rates)

Assume that the SDE is uniformly elliptic and that a,co” € Cg’o and let
{Xt}tepo,1) satisfy the SDE. Then for

1
AP, = 2<]IX +11X(a>11X£_171

we have E[(AP)?] < h;/z(lfl/(qm)
and E[(E[APE | Fir ])2] < h§(1—5/(q+5))/73/2.

In other words

1 1 5
ﬂd—2x<1—w> and ﬁc—2><<1—+5>

When q is arbitrary, we show that for any v > 0 that Var[AP,] < hz/z Y.
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Numerical Results on Clark-Cameron

o AP, E-M

E[(E[AP | F1-])]

o APy, EEM
APy, Antithetic Milstein APy, Antithetic Milstein
1073 T T T rrrrf T T T T1Tr] T T T rrrrf L
10°
1077
0| RS H
0 TN
1071t |
Ll Lol Lol L \\.\..\'
10-3 102 101
T

Haji-Ali (HWU)

Multilevel Path Branching

UQDM, 09 July 2025

20 /22



Numerical Results on Clark-Cameron
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Numerical Results on Clark-Cameron
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Numerical Results on Clark-Cameron

© APy, E-M 0 APy, EEM
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Numerical Results on Clark-Cameron

© AP, E-M 0 APy, EEM
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What's done

M. B. Giles and A.-L. Haji-Ali. "Multilevel Path Branching for Digital
Options”. In: Annals of Applied Probability 34.5 (2024), pp. 4836—4862.
1SsN: 1050-5164. por: 10.1214/24-AAP2083.

e We also consider a sequence 7 = 27 for some n>0. Forn>1,
this reduces the work of AP, to O(2).

@ More theoretical and numerical analysis for antithetic estimators
(including bounding the variance and the Kurtosis).
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https://doi.org/10.1214/24-AAP2083

Future work

o Computing sensitivities: Using bumping, the variance increases as the
bump distance decreases. Branching can help.

@ Pricing other options (Barrier); not clear extension, combine with
adaptive splitting?

@ Particle systems and Multi-index Monte Carlo.
@ Approximate CDFs.

@ Parabolic SPDEs with MLMC or MIMC. Method extends naturally,
but analysis could be more challenging.
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Elliptic SDEs

Definiton ((Si) sets)

We say that a set K C RY is an (Si) set if there exists an index j Lipschitz
function f such that

K={xecR?: x=f(x )}
For S C RY assume that K = 0S C Uj=1 K; for some finite n and (Si) sets
{Kj}/—1. Assume that the SDE is uniformly elliptic and that
a,o0’ € C[,\’O for some X\ € (0,1) and let {X:}tejo,1) satisfy the SDE then
52

T’

E[(P[dK(Xl) < 6|]-‘1,T])2] <C

.
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A nice set

K=6S={xeR?:x2+x3 =1}
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A not-so-nice set

o

K=0S={(r,0) e Ry x[0,2x] : r= (n—|—9/7r)7%,n6 N}
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Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion Y: = exp(X;)?

dYt = aYtdt+UYtth
dX; = adt + odW,;
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Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion Y: = exp(X;)?

de_- = aYtdt+UYtth
dX; = adt + odW,;

For S C RY assume that K = 0S C Uj=1 exp(S;) for some finite n and
(Si) sets {Sj}]_1. Assume that the SDE is uniformly elliptic and that

a, o0’ € C[,\’O for some X\ € (0,1) and let {X:}tejo,1) satisfy the SDE then
52

E[ (PLak(exp(X1)) < 6] Fir])?| < C
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