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The problem: Pricing a Digital option

Let Xt be a d-dimensional stochastic process satisfying the SDE for
0 < t ≤ 1

dXt = a(Xt , t) dt + σ(Xt , t) dWt .

Let (Ft)0≤t≤1 be the natural filtration of Wt .

We want to price a digital option of the form (dropping discounting)

P[ X1 ∈ S ] = E[ IX1∈S ]

for some S ⊂ Rd . Let {X ℓ,t}1
t=0 be an approximation of the path {Xt}1

t=0
at level ℓ using h−1

ℓ ≡ 2ℓ timesteps.

For |E[ IX1∈S − IXℓ,1∈S ]| ≲ hα
ℓ , a Monte Carlo estimator of E[ IX1∈S ] has

computational complexity ε−2−α to achieve MSE ε.
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Multilevel Monte Carlo

Consider a hierarchy of corrections {∆Pℓ}L
ℓ=0 such that

E[ ∆Pℓ ] =

E
[
IX0,1∈S

]
ℓ = 0

E
[
IXℓ,1∈S − IXℓ−1,1∈S

]
otherwise.

MLMC can be formulated as

E[ IX1∈S ] =
∞∑

ℓ=0
E[ ∆Pℓ ] ≈

L∑
ℓ=0

1
Mℓ

Mℓ∑
m=1

∆P(m)
ℓ

Assuming

Var[ ∆Pℓ ] ≲ hβd
ℓ , |E[ ∆Pℓ ]| ≲ hα

ℓ , Work(∆Pℓ) ≲ h−1
ℓ

then to compute with MSE ε2 the complexity of MLMC is
O(ε−2−max(1−βd,0)/α) when βd ̸= 1 and O(ε−2|log ε|2) otherwise.
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Examples: Classical Method

Using ∆Pℓ = IXℓ,1
− IXℓ−1,1

, note that Var[ ∆Pℓ ] ≲ hβd
ℓ is an implication

of E
[ (

X ℓ,1 − X ℓ−1,1
)2
]1/2

≈ O(hβd
ℓ ).

Euler-Maruyama has α = 1 and βd ≈ 1/2 and complexity is O(ε−5/2)
(Compare to O(ε−2|log ε|2) for a Lipschitz payoff).

Milstein has α = 1 and βd ≈ 1 and complexity is O(ε−2|log ε|2)
(Compare to O(ε−2) for a Lipschitz payoff).

Antithetic Milstein has the same rates as Euler-Maruyama (better
rates possible with at least a Lipschitz payoff).
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Conditional Expectation

For some 0 < τ < 1, let

∆Qℓ := E[ ∆Pℓ | F1−τ ].
Note E[ ∆Qℓ ] = E[ ∆Pℓ ].

We can consider the MLMC estimator based on ∆Qℓ instead of ∆Pℓ. The
work and (hopefully improved) variance convergence of ∆Qℓ become
relevant.
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Computing ∆Qℓ

In 1D, taking τ ≡ hℓ and using Euler-Maruyama for the last step we know
that the conditional distribution of X ℓ,1 given F1−τ is Gaussian and we
can compute ∆Qℓ exactly.

Let g(x) = E
[
IXℓ,1∈S

∣∣∣X ℓ,1−τ = x
]
, then (roughly)

E[ ∆Q2
ℓ ] ≈ E

[ (
g(X ℓ,1−τ ) − g(X ℓ−1,1−τ )

)2
]

≲ E
[

(g ′(X ℓ,1−τ ))2
∣∣∣X ℓ,1−τ − X ℓ−1,1−τ

∣∣∣2 ]+ . . .

≲ O
(
h1/2

ℓ (h−1/2
ℓ )2 h2βd

ℓ

)
= O(h−1/2+2βd

ℓ )
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Examples: Conditional Expectations

Euler-Maruyama has 2βd = 1, hence Var[ ∆Qℓ ] ≈ O(h1/2
ℓ ). Using the

Conditional expectation does not offer an advantage over the classical
method.

Milstein has 2βd = 2, hence Var[ ∆Qℓ ] ≈ h3/2
ℓ and complexity is

O(ε−2).

Antithetic Milstein estimator has similar complexity to
Euler-Maruyama. We do have 2βd = 2 but would involve the second
derivative E[ (g ′′)2 ] ∝ h−3/2

ℓ .
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Path splitting to estimate ∆Qℓ

More generally, for any method and any τ , we can use path splitting
(Monte Carlo) with sufficient number of samples, leading to increased
work.
See, e.g., Glasserman (2004) and Burgos & Giles (2012) for more
information on this method (for computing options and sensitivities).

When τ → 0, i.e., splitting late,

Var[ ∆Qℓ ] ≤ E
[

(E[ ∆Pℓ | F1−τ ])2
]

= E
[

(∆Pℓ)2
]

= O(hβd
ℓ )

leads to worse variance.
When τ → 1, i.e., splitting early,

Var[ ∆Qℓ ] ≤ E
[

(E[ ∆Pℓ | F1−τ ])2
]

= (E[ ∆Pℓ ])2 = O(h2βd
ℓ )

leads to worse work.
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Solution: More splitting

For τ ′ > τ

∆Q′
ℓ := E[ ∆Qℓ | F1−τ ′ ]

= E[ E[ ∆Pℓ | F1−τ ] | F1−τ ′ ]
Again E[ ∆Q′

ℓ ] = E[ ∆Pℓ ]

Now we have finer control over τ, τ ′ and the number of samples we can
use to compute the two expectations.
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Path Branching
Let 1 − τℓ′ = 1 − 2−ℓ′ for ℓ′ ∈ {1, . . . , ℓ}.
For every ℓ′, starting from X1−τℓ′ at time 1 − τℓ′ , create two sample
paths {Xt}1−τℓ′ ≤t≤1−τℓ′+1 which depend on two independent samples
of the Brownian motion {Wt}1−τℓ′ ≤t≤1−τℓ′+1 .
Evaluate the payoff difference ∆P(i)

ℓ for every X (i)
1 for i ∈ {1, . . . , 2ℓ}

Define the Monte Carlo average as ∆Pℓ := 2−ℓ∑2ℓ

i=1 ∆P(i)
ℓ

0 1

1−
τ 0

1−
τ 1

1−
τ 2

t

1
2
3
4
5
6
7
8

0 1
1−

τ 0

1−
τ 1

1−
τ 2
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Main Assumptions & Bounds
Another way to see this: We have 2ℓ extra samples. Cost (identical paths
would be too correlated)? Correlation (independent paths would be too
costly)?

Assumption
Assume that there exists βd, βc, p > 0 such that for all τ > hℓ

E[ (∆Pℓ)2 ] ≲ hβd
ℓ

and E
[

(E[ ∆Pℓ | F1−τ ])2
]
≲

hβc
ℓ

τ 1/2

Theorem (Work/Variance bounds)
E[ ∆Pℓ ] = E[ ∆Pℓ ]

Work(∆Pℓ) ≲ ℓ h−1
ℓ

Var[ ∆Pℓ ] ≲ hβd+1
ℓ + hβc

ℓ
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Proof
Recall τℓ′ = 2−ℓ′

Work(∆Pℓ) ≤ h−1
ℓ

(
(1 − τ0) +

ℓ−1∑
ℓ′=1

2ℓ′(τℓ′−1 − τℓ′) + 2ℓτℓ

)
≲ ℓ h−1

ℓ

Var[ ∆Pℓ ] ≤ E


 1

2ℓ

2ℓ∑
i=1

∆P(i)
ℓ

2


≤ 1
2ℓ

E[ ∆P2
ℓ ] + 1

22ℓ

2ℓ∑
i=1

2ℓ∑
j=1,i ̸=j

E[ ∆P(i)
ℓ ∆P(j)

ℓ ]

≤ 1
2ℓ

E[ ∆P2
ℓ ] + 1

22ℓ

2ℓ∑
i=1

2ℓ∑
j=1,i ̸=j

E[ (E[ ∆Pℓ | F1−τ (i,j) ])2 ]

0 1

1−
τ 0

1−
τ 1

1−
τ 2

t

1
2
3
4
5
6
7
8
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Examples: Path Branching

Euler-Maruyama has βd ≈ 1/2 and βc ≈ 1 hence Var[ ∆Pℓ ] ≈ O(hℓ).
The complexity is O(ε−2|log ε|3) (Compare to O(ε−2|log ε|2) for a
Lipschitz payoff).

Milstein has βd ≈ 1 and βc ≈ 2 hence Var[ ∆Pℓ ] ≈ O(h2
ℓ ) and

complexity is O(ε−2) (Same as for a Lipschitz payoff).

Antithetic Milstein estimator has better rates than Euler-Maruyama!
Different analysis shows Var[ ∆Pℓ ] ≈ O(h3/2

ℓ ) hence complexity is
O(ε−2) (Same as for a Lipschitz payoff).
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Simplified Assumptions on SDE solution/Approximation

Theorem (Based on SDE solution and approximation)
Assume that for some δ0 > 0 and all 0 < δ ≤ δ0 and 0 < τ ≤ 1, and
letting d∂S(x) = miny∈∂S∥x − y∥, there is a constant C independent of
δ, τ and F1−τ such that

E
[

(P[ d∂S(X1) ≤ δ | F1−τ ])2
]

≤ C δ2

τ 1/2
.

Assume additionally that there is q > 2 and β > 0 such that

E
[ (

X1 − X ℓ,1
)q ]1/q

≲ hβ/2
ℓ

Then βd = β

2 ×
(

1 − 1
q + 1

)
and βc = β ×

(
1 − 2

q + 2

)
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MLMC Complexity

When q is arbitrary,

βd ≈ β

2 and βc ≈ β

and for β ≤ 2
Var[ ∆Pℓ ] ≈ O(hβ

ℓ )

Work(∆Pℓ) = O(ℓh−1
ℓ )

Using Euler-Maryama: β = 1 and the MLMC computational
complexity is approximately o

(
ε−2−ν

)
for any ν > 0 and for MSE ε.

Using Milstein: β = 2 and the complexity is O(ε−2).
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SDEs with Gaussian Transition Kernels

Lemma
Assume that the SDE is uniformly elliptic and that a, σσT ∈ Cλ,0

b for some
λ ∈ (0, 1) and let {Xt}t∈[0,1] satisfy the SDE. Assume that K ≡ ∂S is
“nice” then there is C > 0 such that

E
[

(P[ dK (X1) ≤ δ | F1−τ ])2
]

≤ C δ2

τ 1/2

and E
[

(P[ dexp K (exp X1) ≤ δ | F1−τ ])2
]

≤ C δ2

τ 1/2
.

Proof. Based on bounding the conditional density of X1 by a Gaussian
density. E.g.

E
[

(P[ dK (X1) ≤ δ | F1−τ ])2
]

≲
1

τ 1/2

(∫ δ

−δ
dx
)

× E[ P[ dK (X1) ≤ δ | F1−τ ] ] ≲ δ2

τ 1/2
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Numerical Results on GBM

K = {x ∈ Rd : |x|ℓ1 ≤ d}

2−13 2−11 2−9 2−7 2−5 2−3 2−1

2−23

2−21

2−19

2−17

2−15

τ −1/2

τ

E[ (E
[∆

P ℓ
|F

1−
τ

])2
] d=1

d=2
d=3
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Numerical Results on GBM

∆Pℓ, E-M ∆Pℓ, E-M
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Antithetic estimator
For the Clark-Cameron SDE ( dXt = W1,t dW2,t), using a Milstein scheme
requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy
area set to zero). Applying to digital options we set

∆Pℓ =

IXℓ,1∈S ℓ = 0
1
2
(
IXℓ,1∈S + I

X (a)
ℓ,1∈S

)
− IXℓ−1,1∈S ℓ > 0

where X ℓ,1 and X (a)
ℓ,1 are an identically distributed antithetic pair.

We have for all q > 2

E
[ ∥∥∥X1 − X ℓ,1

∥∥∥q ]1/q
≤ C h1/2

ℓ

and E
[ ∥∥∥∥1

2(X ℓ,1 + X (a)
ℓ,1) − X ℓ−1,1

∥∥∥∥q ]1/q

≤ C hℓ.
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Antithetic estimator

Lemma (Antithetic rates)
Assume that the SDE is uniformly elliptic and that a, σσT ∈ C2,0

b and let
{Xt}t∈[0,1] satisfy the SDE. Then for

∆Pℓ = 1
2

(
IXℓ,1

+ I
X (a)

ℓ,1

)
− IXℓ−1,1

we have E[ (∆Pℓ)2 ] ≲ h1/2(1−1/(q+1))
ℓ

and E
[

(E[ ∆Pℓ | F1−τ ])2
]
≲ h2(1−5/(q+5))

ℓ /τ
3/2.

In other words

βd = 1
2 ×

(
1 − 1

q + 1

)
and βc = 2 ×

(
1 − 5

q + 5

)
.

When q is arbitrary, we show that for any ν > 0 that Var[ ∆Pℓ ] ≲ h3/2−ν
ℓ .
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Numerical Results on Clark-Cameron
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What’s done

M. B. Giles and A.-L. Haji-Ali. “Multilevel Path Branching for Digital
Options”. In: Annals of Applied Probability 34.5 (2024), pp. 4836–4862.
issn: 1050-5164. doi: 10.1214/24-AAP2083.

We also consider a sequence τℓ′ = 2−ηℓ′ for some η > 0. For η > 1,
this reduces the work of ∆Pℓ to O(2ℓ).

More theoretical and numerical analysis for antithetic estimators
(including bounding the variance and the Kurtosis).
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Future work

Computing sensitivities: Using bumping, the variance increases as the
bump distance decreases. Branching can help.

Pricing other options (Barrier); not clear extension, combine with
adaptive splitting?

Particle systems and Multi-index Monte Carlo.

Approximate CDFs.

Parabolic SPDEs with MLMC or MIMC. Method extends naturally,
but analysis could be more challenging.
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Elliptic SDEs

Definiton ((Si) sets)

We say that a set K ⊂ Rd is an (Si) set if there exists an index j Lipschitz
function f such that

K = {x ∈ Rd : xj = f (x−j)}.

Lemma
For S ⊂ Rd assume that K ≡ ∂S ⊆

⋃n
j=1 Kj for some finite n and (Si) sets

{Kj}n
j=1. Assume that the SDE is uniformly elliptic and that

a, σσT ∈ Cλ,0
b for some λ ∈ (0, 1) and let {Xt}t∈[0,1] satisfy the SDE then

E
[

(P[ dK (X1) ≤ δ | F1−τ ])2
]

≤ C δ2

τ 1/2
.
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A nice set

f1(x)
f2(y)

K ≡ δS = {x ∈ R2 : x2
1 + x2

2 = 1}
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A not-so-nice set

K ≡ ∂S = {(r , θ) ∈ R+×[0, 2π] : r = (n + θ/π)− 1
2 , n ∈ N}
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Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion Yt = exp(Xt)?

dYt = aYt dt + σYt dWt

dXt = a dt + σ dWt

Lemma
For S ⊂ Rd assume that K ≡ ∂S ⊆

⋃n
j=1 exp(Sj) for some finite n and

(Si) sets {Sj}n
j=1. Assume that the SDE is uniformly elliptic and that

a, σσT ∈ Cλ,0
b for some λ ∈ (0, 1) and let {Xt}t∈[0,1] satisfy the SDE then

E
[

(P[ dK (exp(X1)) ≤ δ | F1−τ ])2
]

≤ C δ2

τ 1/2
.
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