Bayesian imaging with deep generative priors

Marcelo Pereyra

Heriot-Watt University & Maxwell Institute for Mathematical Sciences

Joint work with Alessio Spagnoletti, Jean Prost, Andres Almansa and Nicolas Papadakis

24 June 2025, Glasgow 30th Biennial Numerical Analysis Conference

Background

Problem:

- Image data often not useful in raw form (limited resolution & noisy, or accurate but too expensive).
- Evidence-based decision-making needs accurate solutions and reliable uncertainty quantification.

Vision:

Use mathematics to upgrade imaging instruments into smart decision-making support systems.

Approach:

A probabilistic computational imaging framework integrating physical and generative Al models, Bayesian statistical decision-theory and fast (exa)scalable stochastic algorithms.

Today's talk: Generative Al-based Bayesian Imaging

Example of image generated by a Vision Language Model (VLM). These are probabilistic generative models represented by massive deep neural nets.

Prompt: Beautiful white Mediterranean outdoor courtyard, decorated with string lights and candles...Credit: Midjourney.com

Key breakthrough: new mathematical underpinning allows embedding physical models into VLMs and *prompting* with physical measurements, while self-adjusting text prompts.

True High-Res Image

True High-Res Image

Problem Statement

We are interested in an unknown image $x^* \in \mathbb{R}^d$

We measure $y = Ax^* + w$

Recovering X^* from Y is not well posed.

Bayesian Statistical Framework

Model x^* as a realisation of x and y as a realisation of x^*

We draw inferences about x having observed y = y by using Bayes' theorem to combine observed and prior information

$$p(x|y) = \frac{p(y|x)p(x)}{\int_{\mathbb{R}^d} p(y|\tilde{x})p(\tilde{x})d\tilde{x}}$$

Latent Diffusion Models

Latent Diffusion scheme (Source NeurIPS 2023 Tutorial)

$$egin{align} d\mathbf{z}_t &= -rac{eta_t}{2}\mathbf{z}_t dt + \sqrt{eta_t} d\mathbf{w}, \ d\mathbf{z}_t &= iggl[-rac{eta_t}{2}\mathbf{z}_t - eta_t
abla_{\mathbf{z}_t} \log p_t(\mathbf{z}_t) iggr] dt + \sqrt{eta_t} d\overline{\mathbf{w}}, \end{aligned}$$

$$\mathcal{E}: \mathbb{R}^n \mapsto \mathbb{R}^d, \quad \mathcal{D}: \mathbb{R}^d \mapsto \mathbb{R}^n, \quad \mathbf{x} pprox \mathcal{D}(\mathcal{E}(\mathbf{x}),$$

Probability Flow ODE & Consistency Models

Consistency Models:

A <u>distilled</u> diffusion model obtained by training a deep neural network to <u>transport</u> \mathbf{x}_t to \mathbf{x}_0 by mapping any point on the ODE's trajectory back to the origin. CMs are one-step samplers.

Posterior Sampling Overdamped Langevin diffusion

$$\mathrm{d}\boldsymbol{x}_s = \nabla \log p(\boldsymbol{y}|\boldsymbol{x}_s) \mathrm{d}s + \nabla \log p(\boldsymbol{x}_s|c) \mathrm{d}s + \sqrt{2} \mathrm{d}\boldsymbol{w}_s$$

Key observations:

- Converges exponentially fast to the posterior **p(x|y,c)** as the time **s** increases.
- Modular structure with explicit likelihood (data fidelity) and regularisation terms.
- No need to embed likelihood within reverse SDE/ODE through approximations.
- ullet How do we replace $\left|
 abla \log p(m{x}_s | m{c}) \right|$ by a generative model, e.g., stable diffusion ?

Proposed discrete-time approximation

$$egin{aligned} oldsymbol{u} &= oldsymbol{x}_k + \int_0^\delta \!
abla \log p(ilde{oldsymbol{x}}_s|c) \mathrm{d}s + \sqrt{2} \mathrm{d}oldsymbol{w}_s \,, \, ilde{oldsymbol{x}}_0 &= oldsymbol{x}_k \,, \ oldsymbol{x}_{k+1} &= oldsymbol{u} + \delta
abla \log p(oldsymbol{y}|oldsymbol{x}_{k+1}) \,, \end{aligned}$$

Main observations:

- The first line corresponds to a Langevin SDE targeting the prior **p(x|c)**.
 - It admits **p(x|c)** as unique invariant distribution.
 - It contracts exponentially fast towards $\mathbf{p}(\mathbf{x}|\mathbf{c})$ as δ increases.
- The second line (implicit Euler) is equivalent to a so-called proximal step that can be solved exactly for many imaging problems.
- <u>Key idea:</u> replace the first line by a different Markov kernel that has similar properties.

Auto-Encoding Stable Diffusion

 $\mathfrak{E}_t: \quad \boldsymbol{z}_t | \boldsymbol{x} \sim \mathcal{N}(\sqrt{\alpha_t} \mathcal{E}(\boldsymbol{x}), (1 - \alpha_t) \mathrm{Id}_d)$

$$oldsymbol{\mathfrak{D}}_{t,c}: \quad oldsymbol{x}' = \mathcal{D}(G_{ heta}(oldsymbol{z}_t',t,c))$$

Proposed Plug-and-Play Langevin scheme

$$\begin{aligned} &\textbf{for } k = 1, \dots, N \textbf{ do} \\ &\boldsymbol{\epsilon} \sim \mathcal{N}(0, \operatorname{Id}) \\ &\boldsymbol{z}_{t_k}^{(k)} \leftarrow \sqrt{\alpha_{t_k}} \mathcal{E}(\boldsymbol{x}^{(k-1)}) + \sqrt{1 - \alpha_{t_k}} \boldsymbol{\epsilon} & \triangleright \operatorname{Encode} \\ &\boldsymbol{u}^{(k)} \leftarrow \mathcal{D}(G_{\theta}(\boldsymbol{z}_{t_k}^{(k)}, t_k, c)) & \triangleright \operatorname{Decode} \\ &\boldsymbol{x}^{(k)} \leftarrow \operatorname{prox}_{\delta_k g_y}(\boldsymbol{u}^{(k)}) & \triangleright g_{\boldsymbol{y}} : \boldsymbol{x} \mapsto -\log p(\boldsymbol{y}|\boldsymbol{x}) \\ & \textbf{end for} \end{aligned}$$

LATINO (LAtent consisTency INverse sOlver)

Prompt Optimisation Stochastic Approximation Projected Gradient

$$\hat{c}(\mathbf{y}) = \arg\max_{c \in \mathbb{R}^k} p(\mathbf{y} \mid c)$$

$$c_{m+1} = \Pi_C[c_m + \gamma_m \nabla_c \log p(\boldsymbol{y} \mid c_m)]$$

$$\nabla_c \log p(\boldsymbol{y} \mid c) = \mathbf{E}_{\boldsymbol{x}|\boldsymbol{y},c} [\nabla_c \log p(\boldsymbol{y}, \boldsymbol{x} \mid c)],$$

$$= \mathbf{E}_{\boldsymbol{x}|\boldsymbol{y},c} [\nabla_c \log p(\boldsymbol{x} \mid c)],$$

$$\nabla_c \log p(\boldsymbol{y} \mid c_m) \approx \nabla_c \log p(\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(N)} \mid c_m)$$

$$c_{m+1} = \Pi_C \left[c_m + \gamma_m \nabla_c \log p(\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(N)} | c_m) \right]$$

Prompt Optimisation Stochastic Approximation Projected Gradient

$$\begin{aligned} & \textbf{for } m = 1, \dots, M \textbf{ do} \\ & \textbf{ for } k = 1, \dots, N_m \textbf{ do} \\ & \boldsymbol{\epsilon} \sim \mathcal{N}(0, \text{Id}) \\ & \boldsymbol{z}_{t_k}^{(k)} \leftarrow \sqrt{\alpha_{t_k}} \mathcal{E}(\boldsymbol{x}^{(k-1)}) + \sqrt{1 - \alpha_{t_k}} \boldsymbol{\epsilon} \\ & \boldsymbol{u}^{(k)} \leftarrow \mathcal{D}(G_{\theta}(\boldsymbol{z}_{t_k}^{(k)}, t_k, c_m)) \\ & \boldsymbol{x}^{(k)} \leftarrow \text{prox}_{\delta_k g_y}(\boldsymbol{u}^{(k)}) \\ & \textbf{end for} \\ & h(c_m) \leftarrow \nabla_c \log p(\boldsymbol{z}_{t_1}^{(1)}, \dots, \boldsymbol{z}_{t_{N_m}}^{(N_m)} | c_m) \\ & \boldsymbol{c}_{m+1} = \Pi_C \left[c_m + \gamma_m h(c_m) \right] & \rhd \text{SAPG} \\ & \boldsymbol{x}^{(0)} \leftarrow \boldsymbol{x}^{(N_m)} & \rhd \text{Carry state forward} \end{aligned}$$

LATINO-PRO (LAtent consisTency INverse sOlver with PRompt Optimisation)

Some Results

LATINO (8 NFEs) & LATINO-PRO (68 NFEs)

Visualisation of Prompt Optimisation

A sample from **p(x|c)** before and after 4 SAPG steps to adjust prompt (semantics)

Editing: sample from **p(x|c)** using constrained SAPG steps to enforce semantic constraints

Open questions for adventurous NAs

- ullet Asymptotic and non-asymptotic convergence analysis for large δ .
- What Markov kernels are "good" approximations of $u = x_k + \int_0^\delta \nabla \log p(\tilde{x}_s|c) \mathrm{d}s + \sqrt{2} \mathrm{d}w_s$, $\tilde{x}_0 = x_k$, ?
- Constraining models to remain log-concave leads to worse models, but they also lead to slower algorithms. Why?
- No other known Langevin sampler (excluding trivial cases) converges in 4-8 steps in dimension 1M. We observe this behaviour with other DM priors, and on pixel space too. What's going on here?
- Good strategies for moving the forward model to the latent space (save encoder-decoder evals.)