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Problem: 
Image data often not useful in raw form (limited resolution & noisy, or accurate but too expensive).
Evidence-based decision-making needs accurate solutions and reliable uncertainty quantification.

Vision: 
Use mathematics to upgrade imaging instruments into smart decision-making support systems.

Background

Approach:
A probabilistic computational imaging framework integrating physical and generative AI models,
Bayesian statistical decision-theory and fast (exa)scalable stochastic algorithms.
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Prompt: Beautiful white Mediterranean
outdoor courtyard, decorated with string

lights and candles...Credit: Midjourney.com 

Example of image generated by a Vision Language
Model (VLM). These are probabilistic generative
models represented by massive deep neural nets.

Key breakthrough: new mathematical underpinning allows
embedding physical models into VLMs and prompting with
physical measurements, while self-adjusting text prompts.
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Today’s talk: Generative AI-based Bayesian Imaging

True High-Res Image 

True High-Res Image 



We are interested in an unknown image

We measure

Recovering          from         is not well posed.

Model         as a realisation of          and         as a realisation of                     .

We draw inferences about          having observed                   by using Bayes’ theorem to combine observed
and prior information

Problem Statement

Bayesian Statistical Framework



Latent Diffusion scheme (Source NeurIPS 2023 Tutorial)

Latent Diffusion Models



Probability Flow ODE 
& Consistency Models

Consistency Models:

A distilled diffusion model obtained by training a deep neural network to transport x  to x  by mapping
any point on the ODE’s trajectory back to the origin. CMs are one-step samplers.

t 0



Posterior Sampling
Overdamped Langevin diffusion

Key observations:

Converges exponentially fast to the posterior p(x|y,c) as the time s increases.

Modular structure with explicit likelihood (data fidelity) and regularisation terms.

No need to embed likelihood within reverse SDE/ODE through approximations.

How do we replace                                 by a generative model, e.g., stable diffusion ? 



Main observations:

The first line corresponds to a Langevin SDE targeting the prior p(x|c).
 

It admits p(x|c) as unique invariant distribution.

It contracts exponentially fast towards p(x|c) as      increases.
 

The second line (implicit Euler) is equivalent to a so-called proximal step that can be solved exactly
for many imaging problems.

Key idea: replace the first line by a different Markov kernel that has similar properties.

Proposed discrete-time approximation



Auto-Encoding Stable Diffusion



Proposed Plug-and-Play Langevin scheme

LATINO (LAtent consisTency INverse sOlver)



Prompt Optimisation
Stochastic Approximation Projected Gradient



LATINO-PRO (LAtent consisTency INverse sOlver with PRompt Optimisation)

Prompt Optimisation
Stochastic Approximation Projected Gradient



Some Results

LATINO (8 NFEs) & LATINO-PRO (68 NFEs)



Visualisation of Prompt Optimisation

A sample from p(x|c) before and after 4 SAPG steps
to adjust prompt (semantics)

Editing: sample from p(x|c) using constrained
SAPG steps to enforce semantic constraints



Warning! The
Internet is Biased



Open questions for adventurous NAs

Thank you!
https://arxiv.org/abs/2503.12615

Asymptotic and non-asymptotic convergence analysis for large    .

What Markov kernels are “good” approximations of                                                                                        ?

Constraining models to remain log-concave leads to worse models, but they also lead to slower
algorithms. Why?

No other known Langevin sampler (excluding trivial cases) converges in 4-8 steps in dimension 1M.
We observe this behaviour with other DM priors, and on pixel space too. What’s going on here?

Good strategies for moving the forward model to the latent space (save encoder-decoder evals.)


