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Motivation: The Promise of Diffusion Models

o Diffusion Models: Class of stochastic samplers that rely on neural
networks to generate samples from a posterior distribution.

@ High-quality sampling: DMs provide state-of-the-art sample quality
for complex distributions.

e Flexible conditioning: Handle diverse inverse problems (denoising,
inpainting, super-resolution) through unified framework.

o Well-defined probability model enables proper UQ.
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The Computational Challenge

o Large-scale UQ: Reliable uncertainty estimates may require 10*-10°
samples, especially when variability is significant.

e Slow sampling: Typical DM requires 10?-10° neural function
evaluations (NFEs) per sample.

e Prohibitive cost: Full UQ analysis can require 107-10° NFEs.
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Motivation: Why Diffusion Models for UQ?

The need for speed
e Practical deployment in time-sensitive applications (medical
imaging, real-time systems).
o Large-scale uncertainty studies (global sensitivity analysis, robust
optimization).

e Hyperparameter tuning (prior selection, likelihood calibration).

Solutions:
@ Reduce cost per NFE (pruning, quantization).
@ Reduce number of NFE's per sample (distillation).

@ Reduce number of NFE's per statistic computation.
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Bayesian framework

@ Aim of a Machine Learning algorithm: Estimate x € R”, n>> 1, give
observed data y.

Bayesian framework: Y ~ P(.A(x)), conditional on X = x.

Sampling from the conditional density of X, p(:|y) o< L(y|-)=(:), for
likelihood £ and prior 7.

@ Our goal is to quantify the uncertainty that such a probability
distribution entails.
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Denoising Diffusion Probabilistic Models

o Finite sequence of noising kernels, or a continuous-time SDE.
e Build sequence of states {X;}, with Xo = X.

@ Sample from the joint density of (X, ... X7) given Y = y; joint
density admits the desired conditional density as marginal.

o Write
po:T(x0, -, XTly) = (H Ne—1(xe—1]xe,y )) pT(xTly),

for reverse transition kernels, (ﬂt);_ol, and a pre-determined
posterior density pr(-|y) of the final state Xr.

o For example, p7r(-|y) € {&n(:), 0y(:), dn(; (In — M)y, M)}.
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Diffusion Models for Bayesian Inversion

DDPMs: Forward transition kernels, K

Gaussian, Markovian forward process:

Kt(X|Xt—1) = ¢n <X§ \/ e Xt—1, (1 S > Hn> )
Yt—1 Yt—1

for x € R" and where 1l =g >~ > ... >~7 > 0.
Hence

Keo(x|x0) = ¢n(xi vAex0, (1= 7e)ln), 1<t<T,
and we define the score function, for any x € R”,
Vlog Kio(xe|x0) = (v7ex0 — x¢) /(1 = 7e),

and we solve for xg

xolxeiyst) = }(xt 1 (1— 7))V log Keo(xe x0))

t
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DDPMs: Reverse Kernel, A

By conditioning on the initial state and assuming intermediate states are
independent of the observation Y,

ﬂt—1(X\X1:7y)=/ Ne—1,0,¢ (X[ X0, e ) Nose (X0 xe. v ) dxo.

Rn
We use
ﬂ0;t('|Xt7)/) = 03(")
where 1
X(xey,t )= ﬁ(xt + (1 = 72)Vlog Keo(xe | x0))
Finally,

>1t—1;0,t(x|x07 Xt) = d)n('a Ht—1;0,t, U?_l;o,tﬂn)

for some known mean and variance.
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Diffusion Models for Bayesian Inversion

DDPMs: Four Sources of Errors

Xt—1 =4/ et Xt — Tt <rt—1 -~ Jet rt) 50(Xt7}’7 t)
Yt V -1 Yt

M
+ - <1 - Tt >§t7 where rt =1- Yt
[t Yt-1
@ Model error: From imperfect score network training based on a finite
training-set.

o Finite-time error: We have to choose 71 > 0 (to ensure y;_1/7; is
small), hence X7 will not be exactly Gaussian (not fully diffused).

e Truncation error: The posterior p(-|y) has smaller support than
pt(-|y), leading to blow up in sy as t — 0; need to stop early or have
a Gaussian approximation independent of the score.

e Discretization error (our focus today): We can skip M steps,
sampling directly x;_p given x;.
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Multilevel Monte Carlo (MLMC)

Monte Carlo Estimation

o Goal: Estimate E[f(X)], where X ~ p(-).

@ Monte Carlo estimator:

<),

™M=

E[F(X)] ~ ELF(X)] ~
i=1
@ Variance NVar[f( )] Bias [E[f(X)] — E[f(X )]|

@ For RMSE ¢: Number of samples grow as O(s~2) to reduce variance.
Cost per sample grows as ¢ decreases to decrease bias.
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Multilevel Monte Carlo: Basic ldentity

@ Use a hierarchy of approximations: )?0, )A(l, e ,?L with increasing
cost and accuracy (each adding M intermediate steps compared to
the previous approximation).

@ Telescoping sum:

A~ A~ L A~ A~
E[F(X0)] = E[f(X0)]+ D> _E[F(X) = f(Xe-1)]
/=1

@ Define level estimators:

Ny
1 (i (i .
Y, = N Z <f(th )) _ f(XlS_)1)> with coupled samples
i=1

@ Total estimator:
L

No
) 1 i
Y=YY, with Yo = WOE Fd)
/=0 i=1
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MLMC Efficiency and Complexity

° Bias: E[F(Xp) — F(Xp—1)]| ~ M~
Variance: Var| f()A(g) — f()?g_l)] =V~ M
Sampling cost: Gy~ m¢

@ Optimal total cost: Choosing N, to minimize cost, yields

. 2
Cumc S €2 (Z Y% Vece)
=0

g2 WG VG, —0
<L e?2 V,C; ~ const
8_2VLCL V,Cp — o0

o Compare with standard MC at finest level:
Cuc S £2VyC, = MLMC much cheaper if V,C; |
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Multilevel Monte Carlo (MLMC)

Need for Exponential Integrators

e Diffusion models discretise stiff SDEs in reverse:
dX; = (AcXe — BZV log Kio(xe|x0)) dt + BrdW,

o Ast — T, we have v — 0, hence A; becomes unbounded, leading to
instability.
@ Exponential integrators mitigate instability due to the linear terms:

t—M
r — ArdTt
Xt—m = € Je T Xt

t—M —M
s [ A
t

t—M M
+/' els AT B AW,
t

@ Crucially, correlating the fine and coarse paths needs to take into
account previous variance coefficient.
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Numerical Results and Discussion

Three Imaging Inverse Problems

left to right: truth x; observation y; posterior sample from a DM.

B

@ Super-resolution: y = Ax, A downsampling, ill-posed

@ Denoising: y = x + 7, high noise

© Inpainting: y = Mx, partial masking
Use f(x) = x? to estimate marginal second moment (modelling pixel-wise
uncertainty).
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Numerical Results and Discussion

Convergence Rates

@ Empirically fit « and :
E[F(X) — F(R)]] ~ M

and R R
Var[ f(Xp) — f(Xo—1)] ~ M~P*

@ Expected: o =1 and § = 2; corresponding to rates from Milstein
scheme.
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erical Results and Discussion

Results: Super-resolution
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Numerical Result scussion

Results: Denoising
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Numerical Results an:

Results: Inpainting
2 steps
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Numerical Results and Discussion

Concluding Remarks

L. Shaw, A.-L. Haji-Ali, M. Pereyra, and K. Zygalakis. “Bayesian computation with
generative diffusion models by Multilevel Monte Carlo”. In: Philosophical Transactions A
(2025). por: 10.1098/rsta.2024.0333

@ MLMC is a powerful variance reduction tool — for diffusion-based
Bayesian inference, MLMC reduces NFEs by 4-9 times for fixed
accuracy.

@ Requires careful time discretisation and coupling.

@ Need better analysis of the approximation of the score function to
understand degradation of convergence rates.

o Future work
o Combine with distillation and quantisation.
o Multilevel training of DMs.
e Tackle cost associated to other approximations parameters (model,
finite-time and truncation errors).
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