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Motivation

Motivation: The Promise of Diffusion Models

Diffusion Models: Class of stochastic samplers that rely on neural
networks to generate samples from a posterior distribution.

High-quality sampling: DMs provide state-of-the-art sample quality
for complex distributions.

Flexible conditioning: Handle diverse inverse problems (denoising,
inpainting, super-resolution) through unified framework.

Well-defined probability model enables proper UQ.

The Computational Challenge

Large-scale UQ: Reliable uncertainty estimates may require 104-106

samples, especially when variability is significant.

Slow sampling: Typical DM requires 102-103 neural function
evaluations (NFEs) per sample.

Prohibitive cost: Full UQ analysis can require 107-109 NFEs.
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Motivation

Motivation: Why Diffusion Models for UQ?

The need for speed

Practical deployment in time-sensitive applications (medical
imaging, real-time systems).

Large-scale uncertainty studies (global sensitivity analysis, robust
optimization).

Hyperparameter tuning (prior selection, likelihood calibration).

Solutions:

Reduce cost per NFE (pruning, quantization).

Reduce number of NFE’s per sample (distillation).

Reduce number of NFE’s per statistic computation.
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Motivation

Bayesian framework

Aim of a Machine Learning algorithm: Estimate x ∈ Rn, n ≫ 1, give
observed data y .

Bayesian framework: Y ∼ P(A(x)), conditional on X = x .

Sampling from the conditional density of X , p(·|y) ∝ L(y |·)π(·), for
likelihood L and prior π.

Our goal is to quantify the uncertainty that such a probability
distribution entails.
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Diffusion Models for Bayesian Inversion

Denoising Diffusion Probabilistic Models

Finite sequence of noising kernels, or a continuous-time SDE.

Build sequence of states {Xi}Ti=0 with X0 = X .

Sample from the joint density of (X0, . . .XT ) given Y = y ; joint
density admits the desired conditional density as marginal.

Write

p0:T (x0, . . . , xT |y) =

(
T∏
t=1

̂Kt−1(xt−1|xt , y)

)
pT (xT |y) ,

for reverse transition kernels, (̂Kt)T−1
t=0 , and a pre-determined

posterior density pT (·|y) of the final state XT .

For example, pT (· | y) ∈ {ϕn(·), δy (·), ϕn(·; (In −M)y ,M)}.
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Diffusion Models for Bayesian Inversion

DDPMs: Forward transition kernels, K

Gaussian, Markovian forward process:

Kt(x |xt−1) = ϕn

(
x ;

√
γt
γt−1

xt−1,

(
1− γt

γt−1

)
In
)
,

for x ∈ Rn and where 1 = γ0 > γ1 > . . . > γT > 0.
Hence

Kt;0(x |x0) = ϕn(x ;
√
γtx0, (1− γt)In), 1 ≤ t ≤ T ,

and we define the score function, for any x ∈ Rn,

∇ logKt;0(xt |x0) = (
√
γtx0 − xt)/(1− γt),

and we solve for x0

x0(xt ; y , t) =
1

√
γt

(xt + (1− γt)∇ logKt;0(xt |x0))
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Diffusion Models for Bayesian Inversion

DDPMs: Reverse Kernel, K

By conditioning on the initial state and assuming intermediate states are
independent of the observation Y ,

̂Kt−1(x |xt , y) =
∫
Rn

Kt−1;0,t(x |x0, xt)̂K0;t(x0|xt , y)dx0.
We use ̂K0;t(·|xt , y) = δx̂0(·)

where

x̂0(xt ; y , t ) =
1

√
γt

(xt + (1− γt)∇ logKt;0(xt |x0))

Finally,
Kt−1;0,t(x |x0, xt) = ϕn(·, µt−1;0,t , σ

2
t−1;0,tIn)

for some known mean and variance.
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Diffusion Models for Bayesian Inversion

DDPMs: Four Sources of Errors

xt−1 =

√
γt−1

γt
xt −

√
γt

γt−1

(
Γt−1 − γt−1

γt
Γt

)
sθ(xt , y , t)

+

√
Γt−1

Γt

(
1− γt

γt−1

)
ξt , where Γt = 1− γt

Model error: From imperfect score network training based on a finite
training-set.

Finite-time error: We have to choose γT > 0 (to ensure γt−1/γt is
small), hence XT will not be exactly Gaussian (not fully diffused).

Truncation error: The posterior p(· | y) has smaller support than
pt(· | y), leading to blow up in sθ as t → 0; need to stop early or have
a Gaussian approximation independent of the score.

Discretization error (our focus today): We can skip M steps,
sampling directly xt−M given xt .
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Multilevel Monte Carlo (MLMC)

Monte Carlo Estimation

Goal: Estimate E[ f (X ) ], where X ∼ p(·).
Monte Carlo estimator:

E[ f (X ) ] ≈ E[ f (X̂ ) ] ≈ 1

N

N∑
i=1

x̂ (i),

Variance 1
NVar[ f (X̂ ) ], Bias |E[ f (X ) ]− E[ f (X̂ ) ]|.

For RMSE ε: Number of samples grow as O(ε−2) to reduce variance.
Cost per sample grows as ε decreases to decrease bias.
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Multilevel Monte Carlo (MLMC)

Multilevel Monte Carlo: Basic Identity

Use a hierarchy of approximations: X̂0, X̂1, . . . , X̂L with increasing
cost and accuracy (each adding M intermediate steps compared to
the previous approximation).

Telescoping sum:

E[ f (X̂L) ] = E[ f (X̂0) ] +
L∑

ℓ=1

E[ f (X̂ℓ)− f (X̂ℓ−1) ]

Define level estimators:

Yℓ =
1

Nℓ

Nℓ∑
i=1

(
f (x̂

(i)
ℓ )− f (x̂

(i)
ℓ−1)

)
with coupled samples

Total estimator:

Y =
L∑

ℓ=0

Yℓ with Y0 =
1

N0

N0∑
i=1

f (x
(i)
0 )
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Multilevel Monte Carlo (MLMC)

MLMC Efficiency and Complexity

Bias: |E[ f (X̂ℓ)− f (X̂ℓ−1) ]| ∼ M−αℓ

Variance: Var[ f (X̂ℓ)− f (X̂ℓ−1) ] =: Vℓ ∼ M−βℓ

Sampling cost: Cℓ ∼ Mℓ

Optimal total cost: Choosing Nℓ to minimize cost, yields

CMLMC ≲ ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

≲


ε−2V0C0 VℓCℓ → 0

ε−2L2 VℓCℓ ≈ const

ε−2VLCL VℓCℓ → ∞

Compare with standard MC at finest level:

CMC ≲ ε−2V0CL ⇒ MLMC much cheaper if VℓCℓ ↓
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Multilevel Monte Carlo (MLMC)

Need for Exponential Integrators

Diffusion models discretise stiff SDEs in reverse:

dXt =
(
AtXt − B2

t ∇ logKt;0(xt |x0)
)
dt + BtdWt

As t → T , we have γt → 0, hence At becomes unbounded, leading to
instability.

Exponential integrators mitigate instability due to the linear terms:

x rt−M = e−
∫ t−M
t Aτdτxt

− sθ(xt , y , t)

∫ t−M

t
e
∫ t−M
s AτdτB2

s ds

+

∫ t−M

t
e
∫ t−M
s Aτdτ Bs dWs

Crucially, correlating the fine and coarse paths needs to take into
account previous variance coefficient.
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Numerical Results and Discussion

Three Imaging Inverse Problems

left to right: truth x ; observation y ; posterior sample from a DM.

1 Super-resolution: y = Ax , A downsampling, ill-posed

2 Denoising: y = x + η, high noise

3 Inpainting: y = Mx , partial masking

Use f (x) = x2 to estimate marginal second moment (modelling pixel-wise
uncertainty).
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Numerical Results and Discussion

Convergence Rates

Empirically fit α and β:∣∣∣E[ f (X )− f (X̂ℓ) ]
∣∣∣ ∼ M−αℓ

and
Var[ f (X̂ℓ)− f (X̂ℓ−1) ] ∼ M−βℓ

Expected: α = 1 and β = 2; corresponding to rates from Milstein
scheme.
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Numerical Results and Discussion

Results: Super-resolution
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Numerical Results and Discussion

Results: Denoising
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Numerical Results and Discussion

Results: Inpainting
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Numerical Results and Discussion

Concluding Remarks
L. Shaw, A.-L. Haji-Ali, M. Pereyra, and K. Zygalakis. “Bayesian computation with
generative diffusion models by Multilevel Monte Carlo”. In: Philosophical Transactions A
(2025). doi: 10.1098/rsta.2024.0333

MLMC is a powerful variance reduction tool – for diffusion-based
Bayesian inference, MLMC reduces NFEs by 4–9 times for fixed
accuracy.

Requires careful time discretisation and coupling.

Need better analysis of the approximation of the score function to
understand degradation of convergence rates.

Future work

Combine with distillation and quantisation.
Multilevel training of DMs.
Tackle cost associated to other approximations parameters (model,
finite-time and truncation errors).
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