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Background

The problem: Risk assessment

E[f(X)Ixeal

where X is a d-dimensional random variable and Q c RY.
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Background

The problem: Risk assessment

E[f(X)Ixeq]
where X is a d-dimensional random variable and Q c RY.

Three reasons this problem can be challenging:
© Dimensionality of X and Q,

@ the complexity of sampling X or computing f,

© and rarity of event — use (sequential) importance sampling.
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Background Adaptive Monte Carlo

Other risk measures Path Branching

The problem: Risk assessment

E[f(X)Ixeq]

where X is a d-dimensional random variable and Q c R¢.
Three reasons this problem can be challenging:

© Dimensionality of X and Q,

@ the complexity of sampling X or computing f,

© and rarity of event — use (sequential) importance sampling.
Three reasons why this problem can be easy:

@ Structure in approximations of X (and f).

@ Regularity of Q.

© Regularity of the density of X.

For the rest of this talk, take f(X) = 1 for simplicity.
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Background Adaptive Monte Carlo Other risk measures Path Branching

The examples: Computing probabilities

e Financial risk assessment X := E[ Y| R] — MaxLoss (prob. of loss,
VaR, CVaR)

P[E[Y | R] > MaxLoss]
e Digital options X := S(T) where S is an asset price satisfying an SDE

P[S(T) € Q]

@ Nuclear leakage: X = u(Y') depends on the solution of an
advection-dispersion-decay PDE with random porosity Y

Plu(Y) € Q]
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The examples: Computing probabilities

e Financial risk assessment X := E[ Y| R] — MaxLoss (prob. of loss,
VaR, CVaR)

N
1 ,
P[E[Y |R] > MaxLoss] ~ P| E'_lj Y()(R) > MaxLoss

e Digital options X := S(T) where S is an asset price satisfying an SDE
P[S(T) e Q)= P[Sh(T) € Q]

where Sy, is an Euler-Maruyama or Milstein approximations with step
size h.

@ Nuclear leakage: X = u(Y') depends on the solution of an
advection-dispersion-decay PDE with random porosity Y

Plu(Y) € Q] ~ Plup(Y) € Q]

where gy, is a Finite Element approximation with grid size/time-step h.
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Background Adaptive Monte Carlo Other risk measures Path Branching

Multilevel Monte Carlo

Focus on computing E[ g(X)] for some function g : RY — R,

Assume we can approximate X ~ X, with ¢ € N
e Work of X is oc 27¢,
o Bias: |E[g(X;) — g(X)]| ox 27,
o Variance: E[||X, — X||?] o< 275¢.
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Background Adaptive Monte Carlo Other risk measures

Multilevel Monte Carlo (MLMC)

Z (xo°"’))+2 Z Xy — g(XT)

For Lipschitz g, the overall cost of MLMC for computing E[ g(X)] to
accuracy ¢ using optimal L, {M,}5_, is (up to logarithmic terms) is

Classical example: g(x) = max(x — K, 0), Euler-Maruyama
approximation, MLMC complexity is O(efz(log €)2) vs O(e73) for Monte
Carlo.
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Background Adaptive Monte Carlo

Other risk measures

Path Branching

Discontinuous g: Key assumptions

Assumptions

When g(x) = Icq, for some random variable oy > 0 and all £ € N,
assume that

@ There is g > 2 such that

_ q 1/q
(E <ng —xu> ) < o2,
oy

@ There is dg > 0 such that for 6 < dp we have

distga (X
P [ diston(X¢) < 5] <4
o
o
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Background Adaptive Monte Carlo Other risk measures Path Branching

MLMC analysis

] 5 2—()\(7,1,‘9/2)5

var[ HY[EQ o HYZ,1€Q

Proof. A= 11 and | X — X,| = O(2/2) O

_q
q+c

For discontinuous g, the overall cost of MLMC for computing E[g(X)] to
accuracy ¢ using optimal L, {M,}5_, is (up to logarithmic terms) is

—2—max (77_/\"‘1/3/2 70)
Of e “ .

Mission: Find better estimators with improved variance convergence.
Hopefully easy to apply to a large class of problems, dimensions and
approximations, e.g., Euler-Maruyama and Milstein.
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Background Adaptive Monte Carlo Other risk measures Path Branching

Previous research (non-exhaustive)

o
(2]
o
o

©00 O©°

Path splitting: for SDEs (Glasserman 2003; Burgos and Giles 2012).
Importance Sampling on the difference: (Xia and Giles 2012).

Explicit Smoothing: I,-o ~ ®,(x) (Giles, Nagapetyan, and Ritter 2015)
or Iiso = ®(x) (Xu, He, and Wang 2024).

Numerical smoothing: with per-sample root finding (Achtsis, Cools, and
Nuyens 2013; Bayer, Siebenmorgen, and Tempone 2018; Bayer,
Ben Hammouda, and Tempone 2024).

Integration by parts using Malliavin calculus: For SDEs, requires
evaluation of derivative (Altmayer and Neuenkirch 2015).

Integration then differentiation: (Krumscheid and Nobile 2018).
Higher-order approx.: Quasi-Monte Carlo (Xu, He, and Wang 2024).
Adaptivity in Monte Carlo,

o For level-set estimation (with limited analysis), (Min and Gibou 2007).
o For nested expectations (Broadie, Du, and Moallemi 2011).
o PDEs with a.s. bounds (Elfverson, Hellman, and Ma3lgvist 2016).
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Adaptive Multilevel Monte Carlo: Algorithm

Refine samples of X, to Xy,,, where 0 < 1y < [6/] is the smallest integer
for which o
. diStag(Xg)

Ottn, = e 2 at4n,

for some 0 < 0 < 1.

- - - Indicator function I~g
— pdf of X,

x(1) x(2)
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Background Adaptive Monte Carlo Other risk measures Path Branching

Adaptive Multilevel Monte Carlo: Analysis

Theorem (Giles and H-A 2019; H-A, Spence, and Teckentrup 2022)

There is {ap 1k fx—o,..,[6¢], Such that
@ The expected work of sampling ]IYHW cq is: W, oc 27
0

1+6 e
: - a T —130 5,180
@ The variance is: Var[]IXHWeQ ]IXZ—1+W_1EQ] x 272 ,

-1
2
o (F5-1) B<aar
1 B >v/Aq1

where

o Example: Euler-Maruyama approximation, Adaptive MLMC
complexity is O(afz(log 5)2> (same as for Lipschitz g) vs O(s7%/2)
for classical MLMC.
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Digital option on GBM with E-M: Adaptivity

—~—hy =27t - adaptive r = 1.8 —« hy = 4t
—— Monte Carlo
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Background Adaptive Monte Carlo Other risk measures Path Branching

The Good and the Bad of sample adaptivity

The Good:
@ Achieves MLMC complexity as if applied to Lipschitz functions.
@ Applicable to (almost) any model and approximation method.
The Bad:
o Adaptivity mitigates the discontinuity but does not remove it.
@ The main issue: Unlike X/, higher moments of differences of HYeeQ
will have relatively worse convergence.

1/q 271/
[ ‘HXHWEQ ]IXL’—HWAEQ‘ ] —E ’]IYHWGQ B ]IYZ—”WAGQ‘

@ For example: the Kurtosis of the difference is

4
E |: }HY[JHMGQ - ]IY471+7,€71€Q‘ :|

2 1
I — Iy
2 ‘ XZJHIZGQ Xg,prne_lEQ
‘]IX/_HUGQ ]IXg_1+n271€Q‘
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Background Adaptive Monte Carlo Other risk measures Path Branching

The Good and the Bad of sample adaptivity (cont.)

@ While the second moment is decreasing at a good rate (for MLMC),
the Kurtosis is increasing at an equally bad rate (for MLMC).

e Kurtosis issue can/must be resolved through algorithmic means.
@ Nesting estimators of this kind is limited.

o Nesting MLMC estimators of Lipschitz functions is surprisingly
possible. Assuming good control of higher moments, or using methods
that don’t require such high moments, i.e., biased MLMC instead of
unbiased MLMC.

o We applied these ideas to computing Credit Valuation Adjustment
involving triply nested expectations (Giles, H-A, and Spence 2023).

o Antithetic estimators are not applicable — quantity of interest is not
sufficiently smooth.
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Background Adaptive Monte Carlo Other risk measures Path Branching

Other risk measures: VaR

@ VaR is defined for a given confidence level n € (0,1), as
VaR,(X) =inf{€¢ e R : P[X<&] > n}.
This can be estimated by root-finding algorithm, with the acceptable

error £ of estimating the probability being steadily reduced during the
iteration.
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Background Adaptive Monte Carlo Other risk measures Path Bran

Other risk measures: VaR

@ VaR is defined for a given confidence level n € (0,1), as
VaR,(X) =inf{€¢ e R : P[X<&] > n}.

This can be estimated by root-finding algorithm, with the acceptable
error £ of estimating the probability being steadily reduced during the
iteration.

o A different approach is to construct an MLMC version of the
stochastic approximation algorithm (Bardou, Frikha, and Pagés 2009)

g(MLMC No +Z§(Nz _ (Nz

(1+1) _ () 1
§en = fﬁn — Tn+1 (1 - 1_77]1X52n+1)>§(n))

and directly apply adaptive sampling there (Crépey, Frikha, Louzi, and
Spence 2024).
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Background Adaptive Monte Carlo Other risk measures Path Branching

Other risk measures: CVaR

Given an estimate \Emﬁn, CVaR is then (Rockafellar and Uryasev 2002)
E[X|X>VaR,] = VaR,+ (1 —n) 'E[max(0,X—VaR,)]
= inf 1-n)"'E 0,X—
inf {€-+ (1— 1) Blmax(0.X—)1}

= \Ef{n +(1- n)*lE{max(O,X—\aﬁo }
+0<(\Taﬁn—VaRn)2>

For € RMS error, first estimate \Eﬁn to accuracy O(e'/?) at cost o(e2).

Then estimate E[max(O,X—\a/Rn)] to accuracy € using MLMC +
uniform sampling (for a Lipschitz function) — complexity is not affected by
the discontinuity.
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Background Adaptive Monte Carlo

Other risk measures

Path Branching

Other risk measures: Level-set of a function

Let D cC RY be a d-dimensional domain with compact closure and a

sufficiently smooth boundary. We are interested in approximating the zero
level set of a function f,

Lo:={yeD : E[X(y)] =0}

for some random function, X : D — R, which can be evaluated pointwise.
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Background Adaptive Monte Carlo Other risk measures Path Branching

Other risk measures: Level-set of a function

Let D cC RY be a d-dimensional domain with compact closure and a
sufficiently smooth boundary. We are interested in approximating the zero
level set of a function f,

Lo:={yeD : E[X(y)] =0}

for some random function, X : D — R, which can be evaluated pointwise.

For any y € D, we can use iid samples {X()(y)}/2,

Em, [X(y) Z X0y

to get a corresponding approximation of L.
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Background Adaptive Monte Carlo Other risk measures

Path Branching

Adaptive Level-set Computation

Similar to (Min and Gibou 2007), our method is cell-based: for each cell,
[, in a grid starting from a uniform refinement of 29% cells, we

o Select N points in [J, say y7, ... ,y%, deterministically,
@ evaluate the approximations EMZX(ylm), e, gMeX(y%).

@ Obtain an approximate function )A(E via a known approximation (or
interpolation) scheme on the N samples in [J.

o Compute

XEW)|

Error,

N infyeg
of =
o If{ < L and &D < ay, refine the cell O into 29 cells

At the end of the algorithm, return the union of zero level-sets of {X}’}o.
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Background Adaptive Monte Carlo

Other risk measures Path Branching

Adaptive Level-set Computation: Complexity analysis
(Croci, H-A, and Powell 2025+)

Assume the approximation scheme converges with rate « and that there
exist some dg, po > 0 such that for p is the d-dimensional Lebesgue
measure and all 0 < b < §g we have

u({x € D : |[f(x)| < b}) < pob.

Then, there is a choice of g ~ 0, L ~ O(log(e~1/(®4.1))) and {ag}ézeo

such that the adaptive/non-adaptive algorithms have computational
complexities

o (67(”%)/)“7’1) VS. o (67(%%)/)“’*1)

Haji-Ali (HWU, AvH) Hierarchical Risk SNIPS 18 /28



Background Adaptive Monte Carlo Other risk measures Path Branching

Dynamical Conditional Expectation: SDEs

e Utilizing the smoothness of the density requires methods (and
analysis) that is specific to models.

@ Focus on SDEs: Let X be the solution to an SDE at time 1 and
denotes its ¢-level approximation by X,. Denote the filtration at time

t by F;.
@ Define APy := ]IYL;eQ - ]Iyz_vEQ'
@ Forsome 0 <7 <1, let
AQ, = E[AP)| Fi_,].
Note E[AQ] = E[AP].
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Dynamical Conditional Expectation: SDEs

e Utilizing the smoothness of the density requires methods (and
analysis) that is specific to models.

@ Focus on SDEs: Let X be the solution to an SDE at time 1 and
denotes its ¢-level approximation by X,. Denote the filtration at time
o Define AP, .= ]IYEEQ — HYz_leﬂ'

@ Forsome 0 <7 <1, let

AQg = E[APg | .7:1_7—].
Note E[AQK] = E[AP@].

We can consider the MLMC estimator based on AQ; instead of AP,.
The work and (hopefully improved) variance convergence of AQy
become relevant.
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Background Adaptive Monte Carlo

Other risk measures Path Branching

Computing AQy

In 1D, taking 7 = hy, the step-size, and using Euler-Maruyama for the last
step we know that the conditional distribution of X,(1) given Fi_p, is
Gaussian and we can compute AQy exactly.

Making time dependence explicit, let
g(x) = E[HYZ(].)EQ ‘Yg(l — hy) = x}, then (roughly)
- - 2
E[AQF] ~E| (g(Xe(1 ~ b)) — g(Xe-1(1— h)))? |

S E[(g’(YZ(l — he)))? [Xe(1 = he) — Xe—1(1 - h£)|2] L
S (’)(h;/Z (h[1/2)2 héi) _ O(h;l/er’B)
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Background Adaptive Monte Carlo Other risk measures Path Branching

Examples: Conditional Expectations

o Euler-Maruyama has 8 =1, hence Var[ AQ; ] = O(hl}/Z). Using the
Conditional expectation does not offer an advantage over the classical
method.

e Milstein has 3 = 2, hence Var[ AQ,] ~ h?/Z and the MLMC
complexity is O(72).

@ Antithetic estimator with truncated Milstein has similar complexity to
Euler-Maruyama. We do have 8 = 2 but would involve the second

derivative E[ (g”)2] o h, ¥/,
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Background Adaptive Monte Carlo

Other risk measures Path Branching

Path splitting to estimate AQy

More generally, for any method and any 7, we can use path splitting
(Monte Carlo) with sufficient number of samples, leading to increased work.

See, e.g., (Glasserman 2003; Burgos and Giles 2012) (applied to computing
sensitivities).

@ When 7 — 0, i.e., splitting late,

Var[AQ] < E[(E[AP | Fi- ] | =E[(AP) | ~ O(h,)

leads to worse variance.

@ When 7 — 1, i.e., splitting early,

Var[AQ] < E[(E[AP, | 71 )] = (BLAPIY ~ O(H))

leads to worse work.
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Background Adaptive Monte Carlo Other risk measures Path Branching

Path Branching

oletl—mp=1-2"forl €{1,...,0}.

e For every ¢/, given F1-7, at time 1 — 7, create two sample paths
from time 1 — 74 to time 1 — 7471 which depend on two independent
samples of the Brownian motion {Wt}l—wétél—mﬂ-

@ Evaluate the payoff difference APeg') for i € {1,...,2"}, each
corresponding to a sample of X.

@ Define the Monte Carlo average as AP, :=2~* 2,2;1 APé(i)

~l ©o

FNW~OIO

O Q ] 0 O Y v 1
N NN N NN
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Background Adaptive Monte Carlo Other risk measures Path Branching

Work/Variance bounds

Assume that for some g > 0 and all 0 < § < g and 0 < 7 < 1, we have

. 62
E [ (P[ distag(X) < 6| Fi—r ])2} 5 m
Then
E[AP,] = E[AP]
Work(AP;) < ¢ Work(APy)
Var[ AP;] S hpVar[ AP, ] + h)*%°

For the antithetic estimator with truncated-Milstien, we also have (with
higher regularity conditions that we assume/show)

Var[ AP;] S heVar[ AP, ] + b %*
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Background Adaptive Monte Carlo Other risk measures Path Branching

Examples: Path Branching

e Euler-Maruyama has 8 = 1 hence Var[ AP ] =~ O(hy).
The complexity is O(e~2|loge|®) (Compare to O(c~2|loge|?) for a
Lipschitz payoff).

o Milstein has 3 = 2 hence Var[ AP;] ~ O(h?) and complexity is
O(£72) (Same as for a Lipschitz payoff).

@ Antithetic estimator with truncated Milstein estimator has better rates
than Euler-Maruyama!
Var[ APy ] = O(hg’ﬁ) hence complexity is O(¢~2) (Same as for a
Lipschitz payoff).

We also show improved bounds on the Kurotisis.
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Background Adaptive Monte Carlo Other risk measures

Digital option on GBM: Branching

O APy, E-M O AP, E-M
O AP, Milstein O APy, Milstein
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Background Adaptive Monte Carlo Other risk measures

Path Branching

Conclusions

e Adaptive methods are versatile and easy to use, but still suffer when
higher moments are needed.

@ Branching is applicable to a large class of SDEs, is similar to numerical
smoothing, but is a more natural way to exploit smoothness in a
Monte Carlo setting without the need for root finding.

@ Assumptions of the form

2
E| (P[distoq(X) < 0| Fi_-])?| < ‘ii
T1/2

can be related to smoothness conditions on the set 2 and the density
of X (or the coefficients of the SDE).
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Background Adaptive Monte Carlo Other risk measures Path Branching

Current/Future work

o Computing sensitivities: Using bumping, the variance increases as the
bump distance decreases. Branching can help.

e Pricing other options (Barrier); not clear extension, combine with
adaptive splitting?

@ Applications to other applications: Particle systems (probably requires
Multi-index Monte Carlo).

@ Approximate CDFs — adaptivity will probably fare worse than
branching. More analysis required.

@ Parabolic SPDEs: Branching extends naturally, but analysis could be
more challenging.
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Numerical Tests: Digital Options

For constant p, 0, S(0) consider the asset
dS(t) = uS(t)dt + oS(t)dW(t).

Compute
E[lx>o] = E[Is(T)-Kk>0]
for some strike price K > 0. We use Euler-Maruyama with a step size
hy = 2= to approximate Sp,(-) &~ S(-) and set
X = Shg(T) - K.

The assumptions are satisfied using constant oy =1 foraa =/ =~ =1 and
any g < oo giving complexity 0(5_2‘5_”) for standard Multilevel Monte
Carlo and O(e727Y) for any v > 0 using adaptive Multilevel Monte Carlo.
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Digital option on GBM

Consider the assets

ds(t) = u SO(t) + o' SO (£)dW(¢)

where .
Wi(t) = pWih(t) + V1 - 2 (1)

for 1 < i < 10. Consider the digital option with payoff

Iz 51, so(0)>k
Thus, compute

El Lz s so()=k |-
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Digital option on GBM with E-M: Adaptivity

—~— hy=2"% —o- adaptive r =1.8 —k hy=4"*
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Digital option on GBM with E-M: Adaptivity

—~— hy =27¢ - adaptive r =1.8 — h, =47"*
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Digital option on GBM: Branching

K={xecR?: |x|a <d}
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Digital option on GBM: Branching

O APy, E-M O AP, E-M
O AP, Milstein O APy, Milstein
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Digital option on GBM: Branching

O APy, E-M O AP, E-M
O AP, Milstein O APy, Milstein
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Digital option on GBM: Branching
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