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Problem description
We consider the H-valued SDE

dX(t) + (AX(t) — F(X(t))) dt = (I + GX(t)) dW(t), t€ (0, T]
X(0)=Xo € H

Goal: Approximate E[W(X(T))] for smooth Qol W : H — U.

Contribution: A multi-index Monte Carlo method

me WXy ) = WX S W) wag )

umi = Z Z 2 e 2 2t

LEICN i=1

that achieves
E[||pm — EW(X(T)1II] < €

at a computational cost of almost O(¢72) 1.

Lunder favourable conditions.
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Overview

@ The SPDE and mild solutions
© Monte Carlo methods for approximating E[W(X(T))]
9 Accelerated exponential integrator method

@ Numerical experiments and conclusion
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Canonical example: Stochastic heat equation

dX(t) + (— AX(t) — F(X(¢))) dt = (I + GX(t)) dW(t), in [0, T] xD
X(t>')|8D:O7 X(O,-):Xo.

@ Here X € L?(D) for a bounded domain D C R?, d = 1,2,3, convex or with
C? boundary 0D.

e —A :Dom(—A) = W?2(D) C L%(D) — L*(D) is a densely defined,
positive definite linear operator with orthonormal eigenbasis

((ej, )‘J'))Jiv where \; ~ j?/, by Weyl's law.
e We consider D for which (ej, ;) are known. E.g., D = (0,1) with
ej(x) = V2sin(jrx), and )\ = %2
@ A natural example of F is a composition (Nemytskii) mapping:
(F(u))(x) = f(u(x))

where f: R — R is sufficiently smooth with bounded derivatives.
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The General SPDE

We consider

dX(t) + (AX(t) — F(X(¢t))) dt = (I + GX(t)) dW(t)
on Hilbert space H = (H,(-,-), || - ||) and where: A: Dom(A) C H— His a
densely defined, positive definite linear operator with orthonormal eigenbasis

(e, Aj));il, where \; = j* for some v >0

oo
Fractional operators  A'v := Z A (ej,v)eg for reR
Jj=1

Extension of norm: || - || 5, := ||A”/2 - || and associated Hilbert space

G Dom(A™/2) r>0
IR A r<o,
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Q-Wiener process on Hilbert Space
W is a Q—Wiener process, meaning it has independent increments
W(t+ At) — W(t) ~ N(0, AtQ).
Here, for any ¢, € H,t >0,
E[(W(t), ¢) (W(t),9)] = t(Q¢, ¥),

for Q € L] (H) being a covariance operator (non-negative, trace-class,
self-adjoint) with eigenpairs (e, ux) (same eigenbasis as operator Al).

oo
Representation: W(t) = Z VI;Bi(t)e
j=1

with Bj(t) independent, scalar-valued Brownian motions, defined on a complete
probability space (2, F, (F¢)eepo, 1), P)-

The noise operator G € L(H, L2(QY?(H), H)) is specified later.
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Q-Wiener process

W(t,x)

Figure 1: Regularity of W depends on decay rate of (1 = g;)
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Mild solution?

If Xp is Fo—measurable and Xy € LP(Q, H), then there exists a unique mild
solution in C([0, T], LP(£2, H)) to the SPDE

dX(t) + (AX(t) — F(X(¢))) dt = (I + GX(t)) dW(t), te€ (0, T]
X(0) = Xo.

Definition: a mild solution is an H-valued predictable process {X(t)}:cqo, 7]
satisfying

X(t)=e "X + / t e IF(X(s)) ds + / t e M (1 4 GX(s)) dW(s)

for each t € [0, T]. Here, e "te; = e V'e;.

2Da Prato, G. & Zabczyk, J. Stochastic equations in infinite dimensions. Second, xviii+493

(Cambridge University Press, Cambridge, 2014).
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Overview

© Monte Carlo methods for approximating E[W(X(T))]
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Multilevel Monte Carlo (MLMC)3

Let X,(‘,/’ be a general numerical method with respect to integers M (e.g.
timesteps) and N (e.g. eigenfunctions), and let W : H — U, for a real separable
Hilbert space space U = (U, (-,)u, || - ||v)-

For integer sequences (M;)?°, and (N;)32,, consider the telescoping sum

L
Me_
E[W(Xy (T)] = > BNV (T)) = WXy, ()] + V(X (T))].
=1
This motivates the MLMC estimator based on sample averages E,,,

L
e = Y Em [WX(T)) = WX (T + Emg [V (X (T))].
(=1

We assume that (here and below we ignore logarithmic terms!):

Cost(W(X{") = MN.

3Giles, M. B. Multilevel monte carlo path simulation. Operations research 56, 607-617
(2008).
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Multilevel Monte Carlo (MLMC)

Central point: given that
[WX(T) = WXV (T 2,y S M7+ N2
for some f31, B2 > 0, then with M, = 2¢ and N, ~ 2°¢/5-
WG (T)) = (X, (D), S 277

so very few samples m; needed when ¢ > 1.
Performance*: For any ¢ > 0, there exists (m;); C N s.t.

Eflum — ENW(X(T)]IIZ] < €2

with, given weak convergence rates a1, ay,

Cost(um) < 5727""3’((0’%) <P max (0, 3+ ;1)

. -2l L —2-2 +
Monte Carlo cost ise = e 22 <¢ ( 52)

4Chada, N. K., Hoel, H., Jasra, A. & Zouraris, G. E. Improved efficiency of multilevel Monte
Carlo for stochastic PDE through strong pairwise coupling. J. Sci. Comput. 93, Paper No. 62,
29 (2022).
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Multi-index Monte Carlo (MIMC)?

Consider the telescoping double-sum

BT = 37 5 BLWOG) — W) — o )+ w(xi )|

£1=0£,=0

=:A,W(X)

with W(X, M?(T)) = 0 whenever min({1, () < 0.
This motivates the MIMC estimator

=Y Em [80W(X))]

LeT

where Z = {£ = ({1,0,) € N3 | max(/1,f) < L} and (me)eenz C N.

5Haji—A|i, A.-L., Nobile, F. & Tempone, R. Multi-index Monte Carlo: when sparsity meets
sampling. Numerische Mathematik 132, 767-806 (2016).
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The index set

Triangular index sets are more efficent than rectangular ones, so for some suitable
weights (wy, wp) we actually use:

1= {E S Ng ‘ wil1 + woly < L(E)}
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MIMC for SPDE for general numerical method
Theorem

Suppose that W(XY(T)) — W(X(T)) as M, N — co. Assume also that we have
a multiplicative bound on the second order difference

1AW (X)|[32(q.0) S 2700
for 31,82 > 0. Then, there is o; > [3;/2 such that
IE[AV(X)][|y S 27 btk
and there exist MIMC parameters T and (mg) C N s.t.

I = ENW(X(T)]I 2.0y S €2
with Cost(um) =~ e 2"2“|loge 1|

for some 0 < r < 4+ 2u and

2u = max (O, 15 1_ﬂ2>

ar o
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MIMC for SPDE for general numerical method
Theorem

Suppose that W(XY(T)) — W(X(T)) as M, N — co. Assume also that we have
a multiplicative bound on the second order difference

18| q, ) S 27 P—Pate=d maxtavts)
for B1, 82 > 0. Then, there is au; > f3;/2 such that
[E[A(X)] [y 2 na0ata=(0/2 mts 0620
and there exist MIMC parameters T and (mg) C N s.t.

lar = ENW(X(T)]I 2.0y S €2
with Cost(um) =~ e 2"2“|loge |

for some 0 < r < 4+ 2u and

1 1 v+1
ou=2max(0,—— —1 -1 -27T° _4
( B+ Bo v + B2 )
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MIMC schemes for SPDE®

@ Applied to the Zakai equation

dX(t) + (“&i - ;68:2) X(t)dt =—\/p <£(X(t)> dB(t)

with scalar-valued B(t), constant p € [0,1) and X(0) = d5, and D =R.
@ Discretization by finite differences in space and Milstein in time leads to

> Stability condition for explicit scheme: (1 + 2p2)% <1 = no good for
MIMC.
> Implicit scheme is unconditionally stable for small p

e MIMC for Zakai with implicit scheme has complexity O(e 72| log()|?) with
z € {1,3}, slightly slower than MLMC complexity O(c~2).

@ For our SPDE, we first tested implicit Euler MIMC, but did not see an
improvement of MIMC over MLMC.

@ Need to choose a suitable discretization scheme!

SReisinger, C. & Wang, Z. Analysis of multi-index Monte Carlo estimators for a Zakai SPDE.
English. J. Comput. Math. 36, 202-236 (2018).
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Overview

© Accelerated exponential integrator method
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Accelerated exponential integrator method’

A spectral numerical method employing a semigroup shift.

Let T >0, M e Nand Py : H— Span(ey,...,en) =: Hy be orthogonal
projection.

XM [0, T] — Hy given by

t
XM(t) = e APy Xy + / e A=) Py F(XA (5] p-1)) ds
0

t
+/ e A=) Py (1 + GXM (5] p-1))dW(s)
0
where |t|y-1 = max{;T/M : jT/M<t,j=0,1,2,... M}

Note: When @ and A share an eigenbasis and when F is nonlinear, iterations can
often be solved using FFT at an additional log-cost.

7Jentzen, A. & Kloeden, P. E. Overcoming the order barrier in the numerical approximation
of stochastic partial differential equations with additive space-time noise. English. Proc. R. Soc.
Lond., Ser. A, Math. Phys. Eng. Sci. 465, 649-667 (2009).
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Assumptions on Xy, Q, G

For a regularity parameter r € (0,2):
@ Xp € L°(Q, H") is Fo-measurable,

@ QUV2(H) S A e, A Q3| oy < 00 or XA Ly < 00
@ G is a linear operator on the spectrum of A:

(Gu)v = Glu, ei1m) (v, &)y,
j=1
for a shift m € Ny and a sequence ((;)22; C R fulfilling

1—k—34

G2 <on T,
for some 1> § > 0, and ensuring that G € L(H, Lo(QY/?(H), Hs+-1)).

When m # 0, an Euler-Maruyama scheme is not equivalent to a Milstein one
(otherwise we would obtain improved convergence rate w.r.t. M).
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Assumptions on F

Original assumptions®: F: H — H is twice Fréchet differentiable and

|F'(u)vgy-r < Cllvllgy-., forre{0,1,2} and all u,v € H

IF"()(v, W)l e < ClIvilmsIWlgos, for all w,v € H

for C ind. of u. If F is a composition operator in L?(D), this implies linearity.

Instead: Let F € GY(H, H) N G?(H, H™") for some 7 € [0, 2).
@ ||F'(u)v] < Clv| for all u,v € H,
[F(u) = F(V)ll e < C(L+ |Jul%, + ||V]3,.) for all u,v € H",

@
@ [F (vl < CO+ullD)|v] - forall ue A, v e H and
Q

IF"(u) (v va)llgn < Cllvallllval for all u, vi, va € H.

8Jentzen, A. & Kloeden, P. E. Overcoming the order barrier in the numerical approximation
of stochastic partial differential equations with additive space-time noise. English. Proc. R. Soc.
Lond., Ser. A, Math. Phys. Eng. Sci. 465, 649-667 (2009).
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Computation

The exponential integrator approximation X,\’)/’ of the SPDE is now given by
X{M(0) ;= PyXo and for j € {0,...,M — 1}, At = T/M, t; = jAt, by

X (t111) = e 22X (1) + /tj+1 e A=) pyF(XY (1)) ds
t
+ / e A=) (Py + GXJ (1)) dW(s).
g
Note that
< / e A9 (P + GXN' (1)) AW(s), ek>
£

1 i1
= 1 (14 o (X (1), 6k+m>)/ e 5175 4By (s)
t;

-

if k < N and 0 otherwise, meaning the stochastic term can be sampled exactly.
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Regularity and error estimates
Recall that A\ =~ k" for some v > 0. Given the assumptions above:

Theorem

For N> N,M > M and a known Cy, C >0

@ sup, [IXY (D17, n) < ©

@ sup, HX,\'A,/’( ) — Xy(t ))||,_,, am < CANf = N7,

@ sup, |\X,(\,7’(t) — XMt )||LP(QH < min(CM~min(=1) ' CyM~1)  and
Q SlipHX,%Z( ) = Xi/ () = Xy () + Xy (1) |2, m)

M=% min(M~" 1) k€ (0,1/2)
< CAY S M~ " min(MF=INL" 1) k€ [1/2,1)
M-t k€ [1,2)
y
275517511 Uy —k max(l1—vid) = (07 1/2)

yields  E[||AV(X)|}] < { 27 rlarvl-(-rmax(ti-vh0) ke [1/2,1)
2t ts K €[1,2)
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Proof ideas

X5 (£) = Xif (1) = Xg' (1) + Xa/ (1)
= e M(Py — Py — Py + Pn)Xo

t
+/ e—Alt—s) [second order difference for PF](s)ds
0
t
+/ e At=%)[second order difference for PG](s) dW/(s)
0
t
+/ e APy — Py — Py + Py) dW(s).
0

Neither the initial term nor the additive stochastic term directly contribute to
either the spatial or the temporal part of the error!
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Proof ideas
Focus on PF:

PRFOXE (Is]ir-1)) = PuF (XN (Is) 1)) = PrF (X (sl 1)) + PuF X (5] )

= Pa(l = P)(FOK (s)ia-) = FOK (1s)u-1))

+ Pu (FOK (1)) = FOW (L)1) = FOR (s lu-2)) + FOK (15 ]1-1)))

+ P (FO (s a-)) = FOW (L)1) = FOE (L)1) + FO (L))
Then

/ot e A Pg(l = Pu)(F(XA (Ls]ia—1)) = FOXY (Ls ] ) ds

12(Q,H)
t ) _
5/ (= Pn)A™ | 2 A% e 2y ICFOXE (Ls)i=1)) = FXR (L5 w-2))) |2,y s
0
Here

(= Pn)A™ 2|2y = 10 = P)llpqrim iy < At

N+1
and critically

K _A(t— —A(t— —k/2
A% e N 2oy = [l gy pamy S (£ —5)7
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Proof ideas

Repeated use of the mean value theorem, e.g.,
FOXE (LsIw-1)) — FO (s 1)) — FOX(Ls 1)) + FOX (L5 1))
—/ F(.. )(X'(LsJM D) = X (L) = Xa (L5 =) + Xa' (L5 y-)) A

[ E D sl = X s he-s) O 1) = X [5]-) a5,
Using single-difference bounds, and use BDG inequality to deal with G, conclude with

Gronwall inequality.

We derive sharper rates for E[||A¢W(X)||}] when W is linear.
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Summary of Computational Complexities, x € [1, 2]
For different Monte Carlo based methods, the cost is O(¢272¢ |log(¢~1)|")
@ For Monte Carlo, r =0 and

1 1 1
2u=+§2<1+>
a1 (6%)] RV
@ For MLMC, r <2+ 2u and
2u = max (O, L/ () ) < 2

min(aq, az/(kV))

%
@ For MIMC

0 Ky > 1, 0 kv > 1,

2u=19,_ 1
KV gy < 1. 2(‘——) kv <1

[6%) 1%

and
2 kv>1,
r=<4 kv=
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Summary of Computational Complexities, € [0, 1]
For different Monte Carlo based methods, the cost is O( 272" [log(¢~1)|")
@ For Monte Carlo, r =0 and

1 1 1 1
2u=+§2(+)
(6751 (%) K RV

e For MLMC, r <2+ 2u and

- (Z, : +m?:,‘<“ii:if;4§:5% )
< 2max 0,%+$*1

@ For MIMC, r < 4+ 2u and

1—min(1,26) 1— kv 1+4p(1—2
2u = max [0, min(1, I€)7 /-w7 + v( K)
a1+ K/2 fe%) a2 +vag
1 1 1 1-2k
§2max(0,—1,—1,+y(h)>
2K KV KV
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Overview

@ Numerical experiments and conclusion
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Verification of multiplicative convergence rate

Test for Qol W(x) = x and seek to verify multiplicative convergence property

186X | 2(,H) = V Em=10:[[| 8 X[[?] =: €(£1, £2)

with M, =~ N, =~ 2.
When k > 1, our sharp theoretical rates (for linear W) are:

[18eX][720.10) ~ C min(My * N, N ")
Numerical verification: Find 31, 8> > 0 by a least square fit, such that
p*(€1,03) == C min(2~Prh=Fate p=26262)
dominates e(¢1, ¢>) and verify that 51 ~ 1, > ~ vk, when k = 1 and v = 4/3.
For plotting, log,(p(¢1, £2)) for a product p(¢1,¢2) would be a plane over (¢1, 7).

Note: Monte Carlo cost is O(e75%), MLMC cost is O(s~3%).
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Numerical test |

SPDE with A = 0.2(—A)?3 on D = (0,1). Choose Q such that # < 1.01 and
let f(x) = x. Plot e and p in loglog scale.

-2
9 -4
-6
7
-8
<
5 -10
12
3
-14
1 -16
1 3 5 7 9 1 3 5 7 9

A 4

Left: e(él,fg). Right p(él,£2) with 51 =0.98, 52 =1.62.
Expected rates: 5; =1 and 3, = 4/3.
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Numerical test Il

Performance comparison MLMC vs MIMC, linear case.

\—MLMC -~ MIMC - 3(5‘ ‘—MLMC -~ MIMC -~ x =% =& log(e)?

1012.

1072
1010 "

107 1084
1084

10-¢

10—3.0 10-25 10-20 10-1.5 10—1.0 10—3.0 10-25 10—2.0 10-15 10-1.0
€ €

Left: Error ||umi(e) — E[X(1)]]|?. Right: Cost(umi(€))
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Numerical test Il

SPDE with A = (—A)%/3 on D = (0,1). Choose Q such that x < 1.01 and let
f(x) = sin(mx).

Left: e(él,fg). Right: p(él,£2) with 81 = 1.24, B, = 1.74.
Expected rates: 5; =1 and 3, = 4/3.
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Numerical test IV

Performance comparison MLMC vs MIMC, nonlinear case.

[—MLMC ~MIMC -+ x&?

‘—MLMC - MIMC' --oce *log(e)| -+ oce *log(e)?

1072 e 1074
10‘2.
10104
108

10°

10730 10725 10-20 10715 10-10

Left: Error ||umi(e) — E[X(1)]]|?. Right: Cost(umi(€))
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Summary and future work

@ Developed efficent multi-index Monte Carlo method for approximations of
semilinear SPDE

@ We obtain high convergence in space and can handle sufficiently
differentiable composition mappings F

@ Restriction: Operators @ and A have to share eigenbasis (e) on which G
acts

@ Future work: Extension to finite element exponential integrators
@ Future work: Nonlinear G acting on the eigenbasis

o Future work: Sharp rates in time for G = 0 using stochastic sewing®

9Djurdjevac, A., Gerencsér, M. & Kremp, H. Higher order approximation of nonlinear SPDEs
with additive space-time white noise. arXiv preprint arXiv:2406.03058. arXiv: 2406.03058
[math.PR]. https://doi.org/10.48550/arXiv.2406.03058 (June 2024).
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Other notions of solutions

An H-valued predictable process {X(t)}:c[o, 1] is called:
@ a strong solution of the SPDE if for all ¢t € (0, T],

t

X(t):Xo+/0 F(X(s))—AX(s)ds—i—/O (I + GX(s)) dW(s).

Problem: Need that X € Dom(A), and often it is not that smooth.
@ a weak solution of the SPDE if for all t € (0, T] and v € Dom(A)

(X(1),v) =(Xo,v) +/0 (F(X(s)),v) = (X(s),Av) ds

+/0 (1 + GX(s)) dW(s), v).

Relationship®: Strong solutions are weak solutions and weak solutions are
typically mild solutions.

101y, W. & Réckner, M. Stochastic partial differential equations: an introduction. (Springer,
2015).
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Motivation

Regularity: The semigroup e At

is smoothing:

— Mt

le M llcmy = lle e = e Mt <1

So that
le™ " Xoll = AV 2e™ X0 || < [le™ M AY2X0|| < [[AY2X||.
And ||Al/2g—At (H) < Ct~1/2 ysed to bound H!-norm of other terms, e.g.,
(H)
t
1 PUF Oy s

t
:/ |AY2e=AE=2) Py F (XM (5)) | (i ds
0

t
<c / (t — s) "2 PuF(XM(5)) | (i ds
0
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Motivation

Numerical error: bound by

IX(T) = X§' (T < | X(T) = PuX(T)|| + | PuX(T) = Xy'(T)]| -

spatial error time error

Spatial error:
(1 = PWX(T)I| = |A72(1 = PW)AY2X(T)|| < A2 = Pu)ll ey

and
IATY2(1 = Pr) ey = A7Y2(1 = Pr)enall = Ay
Time error:
IPNX(T) = X§(T) | e(ty = O(VAL)

is same rate as Euler—Maruyama has for N-dimensional SDE.
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Negative norm bounds
Negative norm bounds on F,
IF' (@l < COHlullghIvlig-. re{ln—3), ueH . veH,
follow from a duality argument applied to
[
)
in the case that F’(u) is symmetric on H.
Case that A= —A on H = L2(D) with zero Dirichlet b.c. and F is a composition

mapping: Identify H" with W"2 or Wor’2 and note (F'(u)v)(:) = ' (u(:))v(").
Use Sobolev embedding and multiplication theorems with € (d/2,2) to deduce

IF (vl < C(1+ ||l

WVlgm, re{l,x—208}, weHveH"

Lemma

For k < min(n,1) and f twice differentiable with bounded derivatives:
IF ()vllwes S lullweevlwne o€ We2,v e wre,

For k € (1,n),d <2 and f thrice differentiable with bounded derivatives:

IF (u)Vlwe—s2 S @+ ulldye)VIiwne uve W2 ve W2 §>0.
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