An Adaptive Sampling Algorithm for Level-set Approximation

Abdul-Lateef Haji-Ali Joint work with Matteo Croci (BCAM) and Ian CJ Powell (HWU, UoE)

Heriot-Watt University

19 May 2025

Problem Statement

Let $D \subset \mathbb{R}^d$ be a *d*-dimensional domain with compact closure and a sufficiently smooth boundary. We are interested in approximating the zero level set of a function f,

$$\mathcal{L}_0 := \{ \mathsf{x} \in \overline{D} : f(\mathsf{x}) \coloneqq \mathsf{E}[\tilde{f}_\ell(\mathsf{x})] = 0 \}$$

for some random function(s), $\tilde{f}_{\ell}: D \to \mathbb{R}$, which can be evaluated pointwise with cost M_{ℓ} .

Problem Statement

Let $D \subset \mathbb{R}^d$ be a *d*-dimensional domain with compact closure and a sufficiently smooth boundary. We are interested in approximating the zero level set of a function f,

$$\mathcal{L}_0 := \{\mathsf{x} \in \overline{D} : f(\mathsf{x}) \coloneqq \mathsf{E}[\tilde{f}_\ell(\mathsf{x})] = 0\}$$

for some random function(s), $\tilde{f}_{\ell} : D \to \mathbb{R}$, which can be evaluated pointwise with cost M_{ℓ} . For example, for each $x \in \overline{D}$, we can use iid samples $\{f^{(i)}(x)\}_{i=1}^{M_{\ell}}$,

$$ilde{f}_\ell(\mathsf{x}) = rac{1}{M_\ell} \sum_{i=1}^{M_\ell} f^{(i)}(\mathsf{x}).$$

Problem Statement

Let $D \subset \mathbb{R}^d$ be a *d*-dimensional domain with compact closure and a sufficiently smooth boundary. We are interested in approximating the zero level set of a function f,

$$\mathcal{L}_0 := \{\mathsf{x} \in \overline{D} : f(\mathsf{x}) \coloneqq \mathsf{E}[\tilde{f}_{\ell}(\mathsf{x})] = 0\}$$

for some random function(s), $\tilde{f}_{\ell} : D \to \mathbb{R}$, which can be evaluated pointwise with cost M_{ℓ} . For example, for each $x \in \overline{D}$, we can use iid samples $\{f^{(i)}(x)\}_{i=1}^{M_{\ell}}$,

$$\widetilde{f}_\ell(\mathsf{x}) = rac{1}{M_\ell} \sum_{i=1}^{M_\ell} f^{(i)}(\mathsf{x}).$$

In general, we assume the bound, e.g., $\beta=1/2,$

$$\sup_{\mathsf{x}\in\overline{D}}\mathbb{E}\Big[\Big(f(\mathsf{x})-\tilde{f}_{\ell}(\mathsf{x})\Big)^{p}\Big]^{1/p}\leq\sigma M_{\ell}^{-\beta}.$$

When $\sigma = 0$, we have access to direct evaluation of f(x) at cost $\mathcal{O}(1)$.

Haji-Ali (HWU)

Adaptive Algorithm for Level-sets

Assumption on f

We will use the following result: There exist some $\delta_0, \rho_0 > 0$ such that for all $0 < a < \delta_0$ we have

$$\mu(\{x\in\overline{D}:|f(x)|\leq a\})\leq
ho_0a$$

where μ is the *d*-dimensional Lebesgue measure.

Assumption on f

We will use the following result: There exist some $\delta_0, \rho_0 > 0$ such that for all $0 < a < \delta_0$ we have

$$\mu(\{x\in\overline{D}:|f(x)|\leq a\})\leq
ho_0a$$

where μ is the *d*-dimensional Lebesgue measure.

This follows by assuming that f is Lipschitz continuous, using the compactness of \overline{D} and that the level set $\mathcal{L}_0 = \{x \in \overline{D} : f(x) = 0\}$ has Hausdorff dimension k < d, implying \mathcal{L}_0 is k-rectifiable.

Functional approximation

Our method is cell-based.

- For a fixed N, select N points in a cell \Box , say $x_1^{\Box}, \ldots, x_N^{\Box}$, deterministically,
- evaluate the approximations $\tilde{f}_{\ell}(\mathsf{x}_1^{\Box}), \ldots, \tilde{f}_{\ell}(\mathsf{x}_N^{\Box})$. Denote the vector $P^{\Box}\tilde{f}_{\ell} = (\tilde{f}_{\ell}(\mathsf{x}_i^{\Box}))_{i=1}^N$
- to obtain an approximate function $I^{\Box}P^{\Box}\tilde{f}_{\ell} = \hat{f}_{\ell}^{\Box}$ via a known approximation (or interpolation) scheme on the N samples in \Box .
- Compute the union of zero level-sets of $\{\hat{f}_{\ell+k}^{\square}\}_{\square}$.

Functional approximation

Our method is cell-based.

- For a fixed N, select N points in a cell \Box , say $x_1^{\Box}, \ldots, x_N^{\Box}$, deterministically,
- evaluate the approximations $\tilde{f}_{\ell}(\mathsf{x}_1^{\Box}), \ldots, \tilde{f}_{\ell}(\mathsf{x}_N^{\Box})$. Denote the vector $P^{\Box}\tilde{f}_{\ell} = (\tilde{f}_{\ell}(\mathsf{x}_i^{\Box}))_{i=1}^N$
- to obtain an approximate function $I^{\Box}P^{\Box}\tilde{f}_{\ell} = \hat{f}_{\ell}^{\Box}$ via a known approximation (or interpolation) scheme on the N samples in \Box .
- Compute the union of zero level-sets of $\{\hat{f}_{\ell+k}^{\Box}\}_{\Box}$.

Notation summary:

- $f(\cdot)$ is the exact expectation.
- $\tilde{f}_{\ell}(\cdot)$ is the point approximation, evaluated on $\{x_i^{\Box}\}_{i=1}^N$, e.g., each using M_{ℓ} samples.
- $\hat{f}_{\ell}^{\Box}(\cdot)$ is the functional approximation/interpolation on cell \Box .

Approximation error

For any $\ell \in \mathbb{N} \cup \{0\}$ a uniform refinement of \overline{D} into a collection of uniform cells, U_{ℓ} , each with size $h_{\ell} \propto 2^{-\ell}$, satisfies

$$\left(\sum_{\square \in U_\ell} \int_{\square} \left| f(x) - (I^\square P^\square f)(x) \right|^p D\mu(x)
ight)^{1/p} \leq c \ h_\ell^lpha$$

for some (unknown) constant c > 0 and and some known rate $\alpha > 0$ associated with our chosen approximation method.

Approximation error

For any $\ell \in \mathbb{N} \cup \{0\}$ a uniform refinement of \overline{D} into a collection of uniform cells, U_{ℓ} , each with size $h_{\ell} \propto 2^{-\ell}$, satisfies

$$\left(\sum_{\square \in U_\ell} \int_{\square} \left| f(x) - (I^\square P^\square f)(x) \right|^p D\mu(x)
ight)^{1/p} \leq c \ h_\ell^lpha$$

for some (unknown) constant c > 0 and and some known rate $\alpha > 0$ associated with our chosen approximation method.

We also assume that $I^{\Box} : \mathbb{R}^{N \times d} \to L^{p}(\Box)$, for all \Box , is a bounded operator, i.e., for all \Box and any $f \in L^{p}(\Box)$,

$$\|I^{\Box}P^{\Box}f\|_{L^{p}(\Box)} \leq \|I^{\Box}\|_{\mathcal{L}(\mathbb{R}^{N\times d},L^{p}(\Box))} \|P^{\Box}f\|_{\ell^{2}} \leq C_{N} \|P^{\Box}f\|_{\ell^{2}},$$

Under the previous assumptions, we have that,

 Define^1

$$\hat{\delta}_\ell^{\Box_\ell} = rac{ \inf_{x\in \Box_\ell} \left| \widehat{f}_\ell^{\Box_\ell}(x)
ight|}{h_\ell^lpha}$$

Instead of h_ℓ^{lpha} , we can also use a posteriori error estimates for sharper bounds and better constants.

¹Abdul-Lateef Haji-Ali et al. "Adaptive Multilevel Monte Carlo for probabilities". In: *SIAM Journal on Numerical Analysis* 60.4 (2022), pp. 2125–2149.

Haji-Ali (HWU)

Adaptive Algorithm

Require: the uniform grid U_{ℓ} to be refined, the constants α, β, d . A parameter $\theta > 0$, the number of points N to sample at in each cell, sequence $\{a_{\ell+k}\}_k$. Set $R_{\ell} = U_{\ell}$ for $k = 0 \rightarrow |\theta \ell|$ do ▷ Iterate over cells of the current level for each cell $\Box_{\ell+k}$ in $R_{\ell+k}$ of size $h_{\ell+k}$ do Evaluate \tilde{f}_{ℓ} at N points in $\Box_{\ell+k}$. \triangleright e.g., using $M_{\ell} \propto |\Box_{\ell+k}|$ MC samples Fit estimate $\hat{f}_{\ell+k}^{\Box_{\ell+k}}$ on sampled values \tilde{f}_{ℓ} and compute $\hat{\delta}_{\ell+k}$. if $\hat{\delta}_{\ell\perp\nu}^{\Box_{\ell+k}} \leq a_{\ell+k}$ then Split $\Box_{\ell+k}$ into cells each of size $h_{\ell+k+1}$, add them to $R_{\ell+k+1}$. else add $\Box_{\ell+k}$ to $R_{\ell+k+1}$. end if end for end for Return the union of $\{\hat{f}_{\ell+k}^{\square}\}_{\square\in R_{\ell+|\theta\ell|}}$ zero level-sets ▷ Final level set estimate Haii-Ali (HWU) Adaptive Algorithm for Level-sets 8/20 19 May 2025

Let $W_{\ell}^{\Box} \propto M_{\ell} \propto h_{\ell}^{-\alpha/\beta}$ be the work required to approximate $\hat{f}_{\ell}^{\Box_{\ell}}$ on $\Box_{\ell} \in U_{\ell}$.

Let $R(\Box_{\ell})$ be the collection of cells which result from a uniform refinement of the cell \Box_{ℓ} .

Assuming that
$$|R(\Box_\ell)|=2^d$$
 for all \Box_ℓ , the work of such refinement is $2^d h_{\ell+1}^{-lpha/eta}$.

Work definition

We define the (random) work of our method by the recursive formula

$$\sum_{\Box_{\ell} \in U_{\ell}} W_{\ell}^{\Box_{\ell}} \coloneqq \sum_{\Box_{\ell} \in U_{\ell}} \mathbb{I}_{\hat{\delta}_{\ell}^{\Box_{\ell}} \ge a_{\ell}} h_{\ell}^{-\alpha/\beta} + \sum_{\Box_{\ell} \in U_{\ell}} \mathbb{I}_{\hat{\delta}_{\ell}^{\Box_{\ell}} < a_{\ell}} \sum_{\Box_{\ell+1} \in R(\Box_{\ell})} W_{\ell+1}^{\Box_{\ell+1}}$$

Work definition

We define the (random) work of our method by the recursive formula

$$\begin{split} \sum_{\Box_{\ell} \in U_{\ell}} W_{\ell}^{\Box_{\ell}} &\coloneqq \sum_{\Box_{\ell} \in U_{\ell}} \mathbb{I}_{\delta_{\ell}^{\Box_{\ell}} \ge a_{\ell}} h_{\ell}^{-\alpha/\beta} + \sum_{\Box_{\ell} \in U_{\ell}} \mathbb{I}_{\delta_{\ell}^{\Box_{\ell}} < a_{\ell}} \sum_{\Box_{\ell+1} \in R(\Box_{\ell})} W_{\ell+1}^{\Box_{\ell+1}} \\ &\leq 2^{d\ell} h_{\ell}^{-\alpha/\beta} + 2^{d} \left[h_{\ell+1}^{-\alpha/\beta} \sum_{\Box_{\ell} \in U_{\ell}} \mathbb{I}_{\delta_{\ell}^{\Box_{\ell}} < a_{\ell}} + h_{\ell+2}^{-\alpha/\beta} \sum_{\Box_{\ell} \in U_{\ell}} \sum_{\Box_{\ell+1} \in R(\Box_{\ell})} \mathbb{I}_{\delta_{\ell+1}^{\Box_{\ell+1}} < a_{\ell+1}} \\ &+ \dots + h_{\ell+\lfloor\theta\ell\rfloor}^{-\alpha/\beta} \sum_{\Box_{\ell} \in U_{\ell}} \sum_{\Box_{k+1} \in R(\Box_{k})} \cdots \sum_{\Box_{\ell+\lfloor\theta\ell\rfloor - 1} \in R(\Box_{\ell+\lfloor\theta\ell\rfloor - 1})} \mathbb{I}_{\delta_{\ell+\lfloor\theta\ell\rfloor - 1}^{\Box_{\ell+1} \in \theta\ell\rfloor - 1}} \\ &= 2^{d\ell} h_{\ell}^{-\alpha/\beta} + 2^{d} \sum_{k=1}^{\lfloor\theta\ell\rfloor} h_{\ell+k}^{-\alpha/\beta} \left(\sum_{\Box_{\ell+k} \in U_{\ell+k}} \mathbb{I}_{\delta_{\ell+k}^{\Box_{\ell+k}} < a_{\ell+k}} \right) \end{split}$$

19 May 2025

Bound on the number of cells (exact)

Recall: When f is Lipschitz continuous, there exist some $\delta_0, \rho_0 > 0$ such that for all $0 < a < \delta_0$ we have

$$\mu(\{x\in\overline{D}:f(x)\leq a\})\leq
ho_0a$$

where μ is the *d*-dimensional Lebesgue measure. Let

$$\delta_m^{\square_m} = \frac{\inf_{x \in \square_m} |f(x)|}{h_m^{\alpha}}$$

A uniform grid, U_m of \overline{D} into 2^{md} cells of size $h_m = h_0 2^{-m}$ satisfies for any $0 \le a < h_m^{-\alpha} \delta_0 - L 2^{d/2} h_m^{1-\alpha}$,

$$\sum_{\square_m \in U_m} \mathbb{I}_{\delta_m^{\square_m} \leq \mathfrak{a}} \leq \sum_{\square_m \in U_m} \sup_{x \in \square_m} \mathbb{I}_{|f(x)| \leq \mathfrak{a} \, h_m^{\alpha}} \leq b \, 2^{(d-1)m} + c \, \mathfrak{a} \, h_m^{\alpha} \, 2^{dm}$$

for some constants b, c > 0 independent of m.

Haji-Ali (HWU)

Adaptive Algorithm for Level-sets

Bound on the number of cells (approximate)

A uniform grid, U_m of \overline{D} into 2^{md} cells of size $h_m = h_0 2^{-m}$ satisfies for any $0 \le a < h_m^{-\alpha} \delta_0 - L 2^{d/2} h_m^{1-\alpha}$,

$$\sum_{\square_m \in U_m} \mathsf{E}[\mathbb{I}_{\hat{\delta}_m^{\square_m} \le a}] \le \sum_{\square_m \in U_m} \mathbb{E}\left[\sup_{x \in \square_m} \mathbb{I}_{|\hat{f}_m^{\square}(x)| \le a \ h_m^{\alpha}}\right]$$
$$\le c_1 2^{(d-1)m} + \left(c_2 \ h_m^{\alpha\left(\frac{p}{p+1}\right)} + c_3 \ a \ h_m^{\alpha}\right) 2^{dm}$$

for some constants $c_1, c_2, c_3 > 0$ independent of ℓ .

Work bound

Therefore, the total expected work is bounded by

$$\sum_{\Box_{\ell} \in U_{\ell}} \mathsf{E}[W_{\ell}^{\Box_{\ell}}] \leq 2^{d\ell} h_{\ell}^{-\alpha/\beta} + c_1 2^d \sum_{k=0}^{\lfloor \theta \ell \rfloor} 2^{(d-1)(\ell+k)} h_{\ell+k}^{-\alpha/\beta} + c_2 2^d \sum_{k=0}^{\lfloor \theta \ell \rfloor} h_{\ell+k}^{\frac{\alpha p}{p+1} - \frac{\alpha}{\beta}} 2^{d(\ell+k)} + c_3 2^d \sum_{k=0}^{\lfloor \theta \ell \rfloor} a_{\ell+k} h_{\ell+k}^{\alpha - \alpha/\beta} 2^{d(\ell+k)}$$

Assuming a geometric decrease of h_{ℓ} , and $\alpha p/(p+1) \ge 1$, in order to have the desired bound for the work, we only require that

$$\sum_{k=0}^{\lfloor \theta \ell \rfloor} a_{\ell+k} h_{\ell+k}^{\alpha-\alpha/\beta} 2^{d(\ell+k)} \lesssim 2^{\ell} \sum_{k=0}^{\lfloor \theta \ell \rfloor} h_{\ell+k}^{-\frac{\alpha}{\beta}} 2^{(d-1)(\ell+k)},$$

which holds whenever

$$a_{\ell+k} \lesssim h_{\ell+k}^{-lpha} 2^{-k}.$$

Haji-Ali (HWU)

Adaptive Algorithm for Level-sets

Error definition

We define the two sets

$$\mathcal{L}_{\leq} \coloneqq \left\{ x \in \overline{D} \mid f(x) \leq 0
ight\}$$

 $\hat{\mathcal{L}}_{\leq}^{\ell,\Box} \coloneqq \left\{ x \in \Box \mid \hat{f}_{\ell}^{\Box}(x) \leq 0
ight\}; \quad \hat{\mathcal{L}}_{\leq}^{\ell} \coloneqq \bigcup_{\Box_{\ell} \in U_{\ell}} \mathcal{L}_{\leq}^{\ell,\Box_{\ell}}$

and consider a metric of the accuracy of our level-set estimation based on the symmetric difference of the sets \mathcal{L}_{\leq} and $\hat{\mathcal{L}}_{<}^{\ell}$, which we denote by $\mathcal{L}_{\leq} \Delta \hat{\mathcal{L}}_{<}^{\ell}$.

$$\Delta_\ell(x) := \mathbb{I}_{x \in \mathcal{L}_\leq \Delta} \hat{\mathcal{L}}^\ell_\leq$$

We define the error of our method starting from a uniform refinement U_ℓ by the recursive formula

$$\sum_{\Box_{\ell} \in U_{\ell}} \mathsf{E}[\, \mathcal{E}_{\ell}^{\Box_{\ell}}\,] \coloneqq \sum_{\Box_{\ell} \in U_{\ell}} \int_{\Box_{\ell}} \mathsf{E}\Big[\,\mathbb{I}_{\hat{\delta}_{\ell}^{\Box_{\ell}} \ge a_{\ell}} \Delta_{\ell}(x)\,\Big]\,d\mu(x) + \sum_{\Box_{\ell} \in U_{\ell}} \sum_{\Box_{\ell+1} \in \mathcal{R}(\Box_{\ell})} \mathsf{E}\Big[\,\mathbb{I}_{\hat{\delta}_{\ell}^{\Box_{\ell}} < a_{\ell}} \mathcal{E}_{\ell+1}^{\Box_{\ell+1}}\,\Big]$$

Similar to the work, we arrive at

$$\sum_{\Box_{\ell} \in U_{\ell}} \mathsf{E}[E_{\ell}^{\Box_{\ell}}] \leq \sum_{k=0}^{\lfloor \theta \ell \rfloor - 1} \sum_{\Box_{\ell} \in U_{\ell+k}} \int_{\Box_{\ell+k}} \mathsf{E}\Big[\mathbb{I}_{\hat{\delta}_{\ell}^{\Box_{\ell+k}} \geq a_{\ell+k}} \Delta_{\ell+k}(x)\Big] d\mu(x) + \sum_{\Box_{\ell+\lfloor \theta \ell \rfloor} \in U_{\ell+\lfloor \theta \ell \rfloor}} \int_{\Box_{\ell+\lfloor \theta \ell \rfloor}} \mathsf{E}\big[\Delta_{\ell+\lfloor \theta \ell \rfloor}(x)\big] d\mu(x)$$

Error analysis for uniform refinement

Under L^p bounds on the approximation error, we have that for any uniform refinement U_{ℓ} , for some constant c,

$$\sum_{\Box_{\ell} \in U_{\ell}} \int_{\Box_{\ell}} \mathsf{E}[\Delta_{\ell}(\mathsf{x})] d\mu(\mathsf{x}) \leq c h_{\ell}^{\alpha \frac{p}{p+1}}$$
$$\sum_{\Box_{\ell} \in U_{\ell}} \int_{\Box_{\ell}} \mathsf{E}\Big[\mathbb{I}_{\hat{\delta}_{\ell}^{\Box_{\ell}} \geq a_{\ell}} \Delta_{\ell}(\mathsf{x})\Big] d\mu(\mathsf{x}) \leq c a_{\ell}^{-p}$$

Hence

$$\sum_{\Box_\ell \in \mathcal{U}_\ell} \mathsf{E}[\, \mathsf{E}_\ell^{\Box_\ell}\,] \leq c \, \sum_{k=0}^{\lfloor \theta \ell \rfloor - 1} \mathsf{a}_{\ell+k}^{-p} + c \, \mathsf{h}_{\ell+\lfloor \theta \ell \rfloor}^{\alpha \frac{p}{p+1}}$$

Assuming that $a_{\ell+k}$ is geometrically increasing or decreasing in k, we can impose the condition

$$h_{\ell+\lfloor\theta\ell\rfloor}^{-\frac{lpha}{p+1}} \lesssim a_{\ell+k}$$

for all $k \in \{0, \ldots, \lfloor \theta \ell \rfloor - 1\}$.

Haji-Ali (HWU)

19 May 2025

Analysis summary

Hence, we have the conditions

$$h_{\ell+\lfloor\theta\ell\rfloor}^{-\frac{lpha}{p+1}} \lesssim a_{\ell+k} \lesssim h_{\ell+k}^{-lpha} 2^{-k}.$$

for each $k \in \{0, \ldots, \lfloor \theta \ell \rfloor\}$ and all ℓ .

Under these conditions, we have the bounds on work and error of our method:

$$\begin{aligned} \text{Total work} &= \sum_{\Box_{\ell} \in U_{\ell}} \mathsf{E}[W_{\ell}^{\Box_{\ell}}] &\lesssim h_{\ell+\lfloor\theta\ell\rfloor}^{-\alpha/\beta} 2^{d\ell+(d-1)\lfloor\theta\ell} \\ \text{Total error} &= \sum_{\Box_{\ell} \in U_{\ell}} \mathsf{E}[E_{\ell}^{\Box_{\ell}}] &\lesssim h_{\ell+\lfloor\theta\ell\rfloor}^{-\alpha\frac{p}{p+1}} \end{aligned}$$

Adapted from², we consider a refinement criterion of the form

$$\mathbf{a}_{\ell+k} = 2^{-(k+\theta\ell(R-1))(\alpha/\beta+d)/R} \mathbf{h}_{\ell+k}^{-\alpha}$$

where the parameter R determines the strictness of refinement (more strict as $R \to 1$). In particular, this criteria satisfies the conditions above for R > 1 and $h_{\ell} \propto 2^{-\ell}$, given certain bounds on θ .

²Abdul-Lateef Haji-Ali et al. "Adaptive Multilevel Monte Carlo for probabilities". In: *SIAM Journal on Numerical Analysis* 60.4 (2022), pp. 2125–2149, Michael B Giles and Abdul-Lateef Haji-Ali. "Multilevel nested simulation for efficient risk estimation". In: *SIAM/ASA Journal on Uncertainty Quantification* 7.2 (2019), pp. 497–525.

Numerical results

Haji-Ali (HWU)

19 / 20

Numerical results

Haji-Ali (HWU)

Conclusion

- A simple adaptive sampling algorithm for level-set approximation;
- The rate of growth of expected work involves, d 1, the dimension of the level-set, rather than d, the dimension of the ambient space.
- Rate of expected error decrease is of the same as when using uniform refinement.

Conclusion

- A simple adaptive sampling algorithm for level-set approximation;
- The rate of growth of expected work involves, d 1, the dimension of the level-set, rather than d, the dimension of the ambient space.
- Rate of expected error decrease is of the same as when using uniform refinement.

Next (current) steps:

- Consider level-sets of Hausdorff dimension less that d-1; work analysis is exactly the same, the error metric is more tricky (Hausdorff dim. of \mathcal{L}_{\leq} is less than d and dim. of $\hat{\mathcal{L}}_{\leq}^{\ell}$ could be less than d).
- Use Sparse Grids as the base refinement rather than uniform refinement to get dimension-independent convergence rates (in our results and in α). Requires sharper bounds on cell counting, and a method with dimension-independent refinement factor.