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Problem Statement

Let D cC RY be a d-dimensional domain with compact closure and a sufficiently smooth
boundary. We are interested in approximating the zero level set of a function f,

Lo:={xeD : f(x) :=E[#(x)] =0}

for some random function(s), f, : D — R, which can be evaluated pointwise with cost M.
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Lo:={xeD : f(x) :=E[#(x)] =0}

for some random function(s), fo - D — R, which can be evaluated pointwise with cost M;.
For example, for each x € D, we can use iid samples {f(")(x)},{v’f
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Problem Statement

Let D cC RY be a d-dimensional domain with compact closure and a sufficiently smooth
boundary. We are interested in approximating the zero level set of a function f,

Lo:={xeD : f(x) :=E[#(x)] =0}

for some random function(s), f, : D — R, which can be evaluated pointwise with cost M.

For example, for each x € D, we can use iid samples {f(")(x)},{v’:"l,

1
£ix) — — (1
) = 3, 2510
In general, we assume the bound, e.g., 5 =1/2,
- p11l/p _
suBIE[<f(x) — fg(X)) ] < oM, A,
xeD

When o = 0, we have access to direct evaluation of f(x) at cost O(1).
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Assumption on f

We will use the following result: There exist some &g, pg > 0 such that for all 0 < a < dg we
have

p({x € D: |f(x)| < a}) < poa

where p is the d-dimensional Lebesgue measure.
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Assumption on f

We will use the following result: There exist some &g, pg > 0 such that for all 0 < a < dg we
have

p({x € D: |f(x)| < a}) < poa

where p is the d-dimensional Lebesgue measure.

This follows by assuming that f is Lipschitz continuous, using the compactness of D and that

the level set Lo = {x € D : f(x) = 0} has Hausdorff dimension k < d, implying L is
k-rectifiable.
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Functional approximation
Our method is cell-based.

@ For a fixed N, select N points in a cell OJ, say xlm, .. ,x%, deterministically,
o evaluate the approximations f(x7), ..., f(x5). Denote the vector P2f, = (f(x7))V

@ to obtain an approximate function IDPDf} = f;D via a known approximation (or
interpolation) scheme on the N samples in (.

o Compute the union of zero level-sets of {f7,}o.
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Functional approximation
Our method is cell-based.

@ For a fixed N, select N points in a cell OJ, say xlm, .. ,x%, deterministically,
o evaluate the approximations f(x7), ..., f(x5). Denote the vector P2f, = (f(x7))V

@ to obtain an approximate function IDPDfNQ = f;D via a known approximation (or
interpolation) scheme on the N samples in (.

o Compute the union of zero level-sets of {f7,}o.
Notation summary:
e f(-) is the exact expectation.
e f,(-) is the point approximation, evaluated on {xP}N |, e.g., each using M, samples.

° @D(-) is the functional approximation/interpolation on cell OJ.
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Approximation error
For any /€ NU {0} a uniform refinement of D into a collection of uniform cells, Uy, each with
size hy x 27¢, satisfies

1/p

Z/V — (I7P2F)(x) " Duu(x) < chy

OeU,

for some (unknown) constant ¢ > 0 and and some known rate a > 0 associated with our
chosen approximation method.
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Approximation error

For any /€ NU {0} a uniform refinement of D into a collection of uniform cells, Uy, each with
size hy x 27¢, satisfies

1/p

Z/V — (I7P2F)(x) " Duu(x) < chy

OeU,

for some (unknown) constant ¢ > 0 and and some known rate a > 0 associated with our
chosen approximation method.

We also assume that /Z : RNxd LP(O), for all O, is a bounded operator, i.e., for all O and
any f € LP(0O0),

2P llemy < 17l cqence oy 1P Fllee < CullPF e,
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Under the previous assumptions, we have that,

1/p

S [e[]reo - 77 Jaut

OeU,
1/p

<[ X [1F0 -7 e dute

OeU,
1/p
ey / E[I(IPPF)(x) — (1I°P7F) ()P 1du(x)
neu, ’U
1/p
<ch + | S 1P g oy ELICPTF) = (PR
OeU,
<chy + CyM,? < hg, for My ~ h, /P
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Decision variable

Define!

. 20
500 _ infxeo, |1, Z(X)‘
L h;x

Instead of h{*, we can also use a posteriori error estimates for sharper bounds and better
constants.

! Abdul-Lateef Haji-Ali et al. “Adaptive Multilevel Monte Carlo for probabilities”. In: SIAM Journal on
Numerical Analysis 60.4 (2022), pp. 2125-2149.
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Adaptive Algorithm

Require: the uniform grid U, to be refined, the constants «, 3, d. A parameter 6 > 0, the
number of points N to sample at in each cell, sequence {ap;«}«-

Set Ry = Uy
for k=0— |0¢] do
for each cell Oyyx in Ryy i of size hyyy do > Iterate over cells of the current level
Evaluate f; at N points in Oy k. > e.g., using My o< |dyy k| MC samples
Fit estimate Qiéljk on sampled values f; and compute ;.
.o 20
if 0,1 < ar« then
Split Oy k into cells each of size hyy k11, add them to Ry k1.
else
add gy k to Rpypyt
end if
end for
end for
Return the union of {fﬁak}DGRuwu zero level-sets > Final level set estimate
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Work definition

Let W oc My o he_a/ﬁ be the work required to approximate fff on [y € U,.

Let R(CJ;) be the collection of cells which result from a uniform refinement of the cell OJ,.

Assuming that |R(CJ;)| = 2¢ for all O;, the work of such refinement is 2dhg_f1/6.
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Work definition

We define the (random) work of our method by the recursive formula

Sowte= Yy ]ISZDEEQZh;a/BJr 3 Lo, Sowy

el OecUp Oee Uy Dg+1GR(DZ)
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Work definition

We define the (random) work of our method by the recursive formula

DRGED LD o SN o

el OecUp Oee Uy Dg+1€R(DZ)
dep—a/B | od|p—a/B oc/ﬁ
<2%h, 2l T Y HADZ +thys” Y Y Lo,
<ay 6g+1 <ag+1
OyeUy OecUe Op11€R(0y)

+hé+aL/OiJ > > > L0es ey -1

<apy|00)-1
Oe€Up Dk 1€R(Ok)  Opy o) —1€EROpype)—1)  HLPHT o=

[04]

dey—a/p d a/B

=2 h +2 E h£+k E ]ISZDk ot
k=1 Uerk€Up1k
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Bound on the number of cells (exact)

Recall: When f is Lipschitz continuous, there exist some g, pg > 0 such that for all 0 < a < §g

we have B

n({x € D : f(x) < a}) < poa
where 1 is the d-dimensional Lebesgue measure.
Let

infeccs, [F(3)]

hi

S =

m

A uniform grid, Uy, of D into 2™ cells of size h,, = hg2~™ satisfies for any
0<a< h % — L292p1—

D Tignea < Y sup Drgican < 20707+ cahy 20
Om€ Un Om€ Up ¥€=m

for some constants b, ¢ > 0 independent of m.
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Bound on the number of cells (approximate)

A uniform grid, U, of D into 2™ cells of size hy, = hy2~™ satisfies for any
0<a< h;®6 — L[29/2pl

> ElLp. 1< ) E[S”p H|ﬁnﬂ(x)|<ah%}

O Un OmeUy, XEHm

_P_

< C12(d71)m + <C2 hz(ﬁ—l) + c;;ah’f,‘,) 2dm

for some constants ¢, ¢, c3 > 0 independent of £.
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Work bound

Therefore, the total expected work is bounded by

[64] 108 wp w
Z E] WKDZ] < 2dzh£—a/5 4 27 22(d—1)(€+k)hz—fk/5 2 Z hzﬁ 5 9d(+k)
O,eU, k=0 k=0
[0¢)
+c329) ap By T2 Pod(tk)
k=0

Assuming a geometric decrease of hy, and ap/(p+ 1) > 1, in order to have the desired bound
for the work, we only require that

[0¢] e,
Z 3£+khz:,?/ﬁ2d(£+k) < 2! Z h£+ﬁk2(d—1)(£+k)7
k=0 k=0

which holds whenever
—a ok
artk S hszQ :
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Error definition

We define the two sets
Le={xeD|flx)<0}

EZD {XE O ‘ fo(x) < 0} L = U EES’DZ
OeeU,

and consider a metric of the accuracy of our level-set estimation based on the symmetric
difference of the sets £< and L%, which we denote by £~ A L%

Ae(X) = ]IX € L< AlieS

We define the error of our method starting from a uniform refinement Uy by the recursive
formula

O
> E[E "] = Z/ {A% DAg(x } + > ) E{]ISDZ Ezﬁl}
OyeUy OyeUy Ue OecUe Op11€R(0e)
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Error expansion

Similar to the work, we arrive at

16¢)—
Z E[EDZ] < Z Z / E|:H3D“k>az kAg+k(X) du(X)
Ope U, k=0 0OpeUpik Utk ¢ =
X[ ElA)] dut)
Ot 10) € Ues ¢ e oe)
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Error analysis for uniform refinement

Under LP bounds on the approximation error, we have that for any uniform refinement Uy, for
some constant c,

S [ Eadonn < e

OeeUy
Z /D E{]IséubaéAg(x)}du(x)g ca,”
OyeUy ¢

Hence
l6¢]—1

> ElE']<c Z a£+k+Ché—i’-Tg£J
OeeUy

Assuming that a;x is geometrically increasing or decreasing in k, we can impose the condition

p+1
heﬂeej ~ A+k
for all ke{o0,...,0¢] —1}.
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Analysis summary

Hence, we have the conditions

_ﬁ —a o—k
hyflog S aerk S hp 27"

for each k€ {0,...,[0¢]|} and all ¢.
Under these conditions, we have the bounds on work and error of our method:

Total work = Z E[ WE‘] < h;f{eiﬂd”(d*l)%

OpeUy

-

Total error = Z E[E] < hzﬂz;j
OeeUy
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The refinement criteria

Adapted from?, we consider a refinement criterion of the form

ape = 27 (KHOUR=1)(@/3+d)/R par

where the parameter R determines the strictness of refinement (more strict as R — 1). In

particular, this criteria satisfies the conditions above for R > 1 and h; 24, given certain
bounds on 6.

2Abdul-Lateef Haji-Ali et al. “Adaptive Multilevel Monte Carlo for probabilities”. In: SIAM Journal on
Numerical Analysis 60.4 (2022), pp. 2125-2149, Michael B Giles and Abdul-Lateef Haji-Ali. “Multilevel nested

simulation for efficient risk estimation”. In: SIAM/ASA Journal on Uncertainty Quantification 7.2 (2019),
pp. 497-525.
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Numerical results
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Numerical results

1036 [ \ T .
—e— Adaptive method s
- == Uniform Max: 2(e/B+d)(1+0)¢ P
1027 || - - - Uniform Min: 2(«/B+d)¢ et 1
Adaptive: 2(@/B+d-1)(1+0)¢
x -
S 1018 | |
= 10
10° |- |
100 *\ I I i | | | a
2 4 6 8 10 12 14 16

Haji-Ali (HWU) Adaptive Algorithm for Level-sets 19 May 2025 19 /20



Conclusion

@ A simple adaptive sampling algorithm for level-set approximation;

@ The rate of growth of expected work involves, d — 1, the dimension of the level-set, rather
than d, the dimension of the ambient space.

@ Rate of expected error decrease is of the same as when using uniform refinement.
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Conclusion

@ A simple adaptive sampling algorithm for level-set approximation;

@ The rate of growth of expected work involves, d — 1, the dimension of the level-set, rather
than d, the dimension of the ambient space.

@ Rate of expected error decrease is of the same as when using uniform refinement.

Next (current) steps:

o Consider level-sets of Hausdorff dimension less that d — 1; work analysis is exactly the
same, the error metric is more tricky (Hausdorff dim. of L< is less than d and dim. of Eé
could be less than d).

@ Use Sparse Grids as the base refinement rather than uniform refinement — to get
dimension-independent convergence rates (in our results and in «). Requires sharper
bounds on cell counting, and a method with dimension-independent refinement factor.
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