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Problem Statement

Let D ⊂⊂ Rd be a d-dimensional domain with compact closure and a sufficiently smooth
boundary. We are interested in approximating the zero level set of a function f ,

L0 := {x ∈ D : f (x) := E[ f̃ℓ(x) ] = 0}

for some random function(s), f̃ℓ : D → R, which can be evaluated pointwise with cost Mℓ.

For example, for each x ∈ D, we can use iid samples {f (i)(x)}Mℓ
i=1,

f̃ℓ(x) =
1
Mℓ

Mℓ∑
i=1

f (i)(x).

In general, we assume the bound, e.g., β = 1/2,

sup
x∈D

E
[(

f (x)− f̃ℓ(x)
)p]1/p

≤ σM−β
ℓ .

When σ = 0, we have access to direct evaluation of f (x) at cost O(1).
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Assumption on f

We will use the following result: There exist some δ0, ρ0 > 0 such that for all 0 < a < δ0 we
have

µ({x ∈ D : |f (x)| ≤ a}) ≤ ρ0a

where µ is the d-dimensional Lebesgue measure.

This follows by assuming that f is Lipschitz continuous, using the compactness of D and that
the level set L0 = {x ∈ D : f (x) = 0} has Hausdorff dimension k < d , implying L0 is
k-rectifiable.
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Functional approximation

Our method is cell-based.

For a fixed N, select N points in a cell □, say x□1 , . . . , x
□
N , deterministically,

evaluate the approximations f̃ℓ(x□1 ), . . . , f̃ℓ(x
□
N). Denote the vector P□f̃ℓ = (f̃ℓ(x□i ))

N
i=1

to obtain an approximate function I□P□f̃ℓ = f̂ □ℓ via a known approximation (or
interpolation) scheme on the N samples in □.

Compute the union of zero level-sets of {f̂ □ℓ+k}□.

Notation summary:
f (·) is the exact expectation.
f̃ℓ(·) is the point approximation, evaluated on {x□i }Ni=1, e.g., each using Mℓ samples.

f̂ □ℓ (·) is the functional approximation/interpolation on cell □.
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Approximation error

For any ℓ∈N ∪ {0} a uniform refinement of D into a collection of uniform cells, Uℓ, each with
size hℓ ∝ 2−ℓ, satisfies∑

□∈Uℓ

∫
□

∣∣f (x)− (I□P□f )(x)
∣∣pDµ(x)

1/p

≤ c hαℓ

for some (unknown) constant c > 0 and and some known rate α > 0 associated with our
chosen approximation method.

We also assume that I□ : RN×d → Lp(□), for all □, is a bounded operator, i.e., for all □ and
any f ∈ Lp(□),

∥I□P□f ∥Lp(□) ≤ ∥I□∥L(RN×d ,Lp(□)) ∥P□f ∥ℓ2 ≤ CN ∥P□f ∥ℓ2 ,
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Under the previous assumptions, we have that,∑
□∈Uℓ

∫
□

E
[ ∣∣∣f (x)− f̂ □ℓ (x)

∣∣∣p ]dµ(x)
1/p

≤

∑
□∈Uℓ

∫
□

∣∣f (x)− (I□P□f )(x)
∣∣pdµ(x)

1/p

+

∑
□∈Uℓ

∫
□

E[ |(I□P□f )(x)− (I□P□f̃ℓ)(x)|p ]dµ(x)

1/p

≤c hαℓ +

∑
□∈Uℓ

∥I□∥pL(RN×d ,Lp(□))
E[ ∥(P□f )− (P□f̃ℓ)∥pℓ2 ]

1/p

≤c hαℓ + C̃NM
−β
ℓ ≲ hαℓ , for Mℓ ∼ h

−α/β
ℓ
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Decision variable

Define1

δ̂□ℓ
ℓ =

infx∈□ℓ

∣∣∣f̂ □ℓ
ℓ (x)

∣∣∣
hαℓ

Instead of hαℓ , we can also use a posteriori error estimates for sharper bounds and better
constants.

1Abdul-Lateef Haji-Ali et al. “Adaptive Multilevel Monte Carlo for probabilities”. In: SIAM Journal on
Numerical Analysis 60.4 (2022), pp. 2125–2149.
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Adaptive Algorithm

Require: the uniform grid Uℓ to be refined, the constants α, β, d . A parameter θ > 0, the
number of points N to sample at in each cell, sequence {aℓ+k}k .
Set Rℓ = Uℓ

for k = 0 → ⌊θℓ⌋ do
for each cell □ℓ+k in Rℓ+k of size hℓ+k do ▷ Iterate over cells of the current level

Evaluate f̃ℓ at N points in □ℓ+k . ▷ e.g., using Mℓ ∝ |□ℓ+k | MC samples
Fit estimate f̂

□ℓ+k

ℓ+k on sampled values f̃ℓ and compute δ̂ℓ+k .
if δ̂

□ℓ+k

ℓ+k ≤ aℓ+k then
Split □ℓ+k into cells each of size hℓ+k+1, add them to Rℓ+k+1.

else
add □ℓ+k to Rℓ+k+1.

end if
end for

end for
Return the union of {f̂ □ℓ+k}□∈Rℓ+⌊θℓ⌋ zero level-sets ▷ Final level set estimate
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Work definition

Let W□
ℓ ∝ Mℓ ∝ h

−α/β
ℓ be the work required to approximate f̂ □ℓ

ℓ on □ℓ ∈ Uℓ.

Let R(□ℓ) be the collection of cells which result from a uniform refinement of the cell □ℓ.

Assuming that |R(□ℓ)| = 2d for all □ℓ, the work of such refinement is 2dh−α/β
ℓ+1 .
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Work definition

We define the (random) work of our method by the recursive formula∑
□ℓ∈Uℓ

W□ℓ
ℓ :=

∑
□ℓ∈Uℓ

I
δ̂
□ℓ
ℓ ≥aℓ

h
−α/β
ℓ +

∑
□ℓ∈Uℓ

I
δ̂
□ℓ
ℓ <aℓ

∑
□ℓ+1∈R(□ℓ)

W
□ℓ+1
ℓ+1

≤ 2dℓh−α/β
ℓ + 2d

[
h
−α/β
ℓ+1

∑
□ℓ∈Uℓ

I
δ̂
□ℓ
ℓ <aℓ

+ h
−α/β
ℓ+2

∑
□ℓ∈Uℓ

∑
□ℓ+1∈R(□ℓ)

I
δ̂
□ℓ+1
ℓ+1 <aℓ+1

+ . . .+ h
−α/β
ℓ+⌊θℓ⌋

∑
□ℓ∈Uℓ

∑
□k+1∈R(□k )

· · ·
∑

□ℓ+⌊θℓ⌋−1∈R(□ℓ+⌊θℓ⌋−1)

I
δ̂
□ℓ+⌊θℓ⌋−1
ℓ+⌊θℓ⌋−1 <aℓ+⌊θℓ⌋−1

]

= 2dℓh−α/β
ℓ + 2d

⌊θℓ⌋∑
k=1

h
−α/β
ℓ+k

 ∑
□ℓ+k∈Uℓ+k

I
δ̂
□ℓ+k
ℓ+k <aℓ+k


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Bound on the number of cells (exact)

Recall: When f is Lipschitz continuous, there exist some δ0, ρ0 > 0 such that for all 0 < a < δ0
we have

µ({x ∈ D : f (x) ≤ a}) ≤ ρ0a

where µ is the d-dimensional Lebesgue measure.
Let

δ□m
m =

infx∈□m |f (x)|
hαm

A uniform grid, Um of D into 2md cells of size hm = h02−m satisfies for any
0 ≤ a < h−α

m δ0 − L2d/2h1−α
m ,∑

□m∈Um

I
δ□m
m ≤a

≤
∑

□m∈Um

sup
x∈□m

I|f (x)|≤a hαm
≤ b 2(d−1)m + c a hαm 2dm

for some constants b, c > 0 independent of m.
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Bound on the number of cells (approximate)

A uniform grid, Um of D into 2md cells of size hm = h02−m satisfies for any
0 ≤ a < h−α

m δ0 − L2d/2h1−α
m ,∑

□m∈Um

E[ I
δ̂□m
m ≤a

] ≤
∑

□m∈Um

E
[
sup
x∈□m

I|f̂ □m (x)|≤a hαm

]

≤ c12(d−1)m +

(
c2 h

α
(

p
p+1

)
m + c3 a h

α
m

)
2dm

for some constants c1, c2, c3 > 0 independent of ℓ.
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Work bound

Therefore, the total expected work is bounded by

∑
□ℓ∈Uℓ

E[W□ℓ
ℓ ] ≤ 2dℓh−α/β

ℓ + c1 2d
⌊θℓ⌋∑
k=0

2(d−1)(ℓ+k)h
−α/β
ℓ+k + c2 2d

⌊θℓ⌋∑
k=0

h
αp
p+1−

α
β

ℓ+k 2d(ℓ+k)

+ c3 2d
⌊θℓ⌋∑
k=0

aℓ+k h
α−α/β
ℓ+k 2d(ℓ+k)

Assuming a geometric decrease of hℓ, and αp/(p + 1) ≥ 1, in order to have the desired bound
for the work, we only require that

⌊θℓ⌋∑
k=0

aℓ+kh
α−α/β
ℓ+k 2d(ℓ+k) ≲ 2ℓ

⌊θℓ⌋∑
k=0

h
−α

β

ℓ+k2
(d−1)(ℓ+k),

which holds whenever
aℓ+k ≲ h−α

ℓ+k2
−k .
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Error definition

We define the two sets

L≤ :=
{
x ∈ D

∣∣∣ f (x) ≤ 0
}

L̂ℓ,□
≤ :=

{
x ∈ □

∣∣∣ f̂ □ℓ (x) ≤ 0
}
; L̂ℓ

≤ :=
⋃

□ℓ∈Uℓ

Lℓ,□ℓ
≤

and consider a metric of the accuracy of our level-set estimation based on the symmetric
difference of the sets L≤ and L̂ℓ

≤, which we denote by L≤∆ L̂ℓ
≤.

∆ℓ(x) := Ix ∈ L≤ ∆ L̂ℓ
≤

We define the error of our method starting from a uniform refinement Uℓ by the recursive
formula∑

□ℓ∈Uℓ

E[E□ℓ
ℓ ] :=

∑
□ℓ∈Uℓ

∫
□ℓ

E
[
I
δ̂
□ℓ
ℓ ≥aℓ

∆ℓ(x)

]
dµ(x) +

∑
□ℓ∈Uℓ

∑
□ℓ+1∈R(□ℓ)

E
[
I
δ̂
□ℓ
ℓ <aℓ

E
□ℓ+1
ℓ+1

]
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Error expansion

Similar to the work, we arrive at

∑
□ℓ∈Uℓ

E[E□ℓ
ℓ ] ≤

⌊θℓ⌋−1∑
k=0

∑
□ℓ∈Uℓ+k

∫
□ℓ+k

E
[
I
δ̂
□ℓ+k
ℓ ≥aℓ+k

∆ℓ+k(x)

]
dµ(x)

+
∑

□ℓ+⌊θℓ⌋∈Uℓ+⌊θℓ⌋

∫
□ℓ+⌊θℓ⌋

E
[
∆ℓ+⌊θℓ⌋(x)

]
dµ(x)
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Error analysis for uniform refinement

Under Lp bounds on the approximation error, we have that for any uniform refinement Uℓ, for
some constant c , ∑

□ℓ∈Uℓ

∫
□ℓ

E[∆ℓ(x) ]dµ(x) ≤ ch
α p

p+1
ℓ

∑
□ℓ∈Uℓ

∫
□ℓ

E
[
I
δ̂
□ℓ
ℓ ≥aℓ

∆ℓ(x)

]
dµ(x) ≤ c a−p

ℓ

Hence ∑
□ℓ∈Uℓ

E[E□ℓ
ℓ ] ≤ c

⌊θℓ⌋−1∑
k=0

a−p
ℓ+k + c h

α p
p+1

ℓ+⌊θℓ⌋

Assuming that aℓ+k is geometrically increasing or decreasing in k , we can impose the condition

h
− α

p+1
ℓ+⌊θℓ⌋ ≲ aℓ+k

for all k ∈{0, . . . , ⌊θℓ⌋ − 1}.
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Analysis summary

Hence, we have the conditions

h
− α

p+1
ℓ+⌊θℓ⌋ ≲ aℓ+k ≲ h−α

ℓ+k2
−k .

for each k ∈{0, . . . , ⌊θℓ⌋} and all ℓ.
Under these conditions, we have the bounds on work and error of our method:

Total work =
∑

□ℓ∈Uℓ

E[W□ℓ
ℓ ] ≲ h

−α/β
ℓ+⌊θℓ⌋2

dℓ+(d−1)⌊θℓ⌋

Total error =
∑

□ℓ∈Uℓ

E[E□ℓ
ℓ ] ≲ h

−α p
p+1

ℓ+⌊θℓ⌋
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The refinement criteria

Adapted from2, we consider a refinement criterion of the form

aℓ+k = 2−(k+θℓ(R−1))(α/β+d)/Rh−α
ℓ+k

where the parameter R determines the strictness of refinement (more strict as R → 1). In
particular, this criteria satisfies the conditions above for R > 1 and hℓ ∝ 2−ℓ, given certain
bounds on θ.

2Abdul-Lateef Haji-Ali et al. “Adaptive Multilevel Monte Carlo for probabilities”. In: SIAM Journal on
Numerical Analysis 60.4 (2022), pp. 2125–2149, Michael B Giles and Abdul-Lateef Haji-Ali. “Multilevel nested
simulation for efficient risk estimation”. In: SIAM/ASA Journal on Uncertainty Quantification 7.2 (2019),
pp. 497–525.
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Numerical results
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Conclusion

A simple adaptive sampling algorithm for level-set approximation;

The rate of growth of expected work involves, d − 1, the dimension of the level-set, rather
than d , the dimension of the ambient space.

Rate of expected error decrease is of the same as when using uniform refinement.

Next (current) steps:
Consider level-sets of Hausdorff dimension less that d − 1; work analysis is exactly the
same, the error metric is more tricky (Hausdorff dim. of L≤ is less than d and dim. of L̂ℓ

≤
could be less than d).

Use Sparse Grids as the base refinement rather than uniform refinement – to get
dimension-independent convergence rates (in our results and in α). Requires sharper
bounds on cell counting, and a method with dimension-independent refinement factor.
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