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Problem description
Given an of H-valued SDE

dX(t) + (AX(t) — F(X(t))) dt = (I + GX(t)) dW(t), t€ (0, T]
X(0)=Xo € H

Goal: Approximate E[W(X(T))] for smooth Qol W : H — U.

Contribution: A multi-index Monte Carlo method

me WX )~ WG e e

UMl = Z Z 2 e 2 2t

LETCN2 ig=1

that achieves
E[||m — EW(X(T)1IIT] < €

at a computational cost of almost O(¢72) 1.

Lunder favourable conditions.
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Overview

@ The SPDE and mild solutions
© Monte Carlo methods for approximating E[W(X(T))]
9 Accelerated exponential integrator method

@ Numerical experiments and conclusion
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Canonical example: Stochastic heat equation

dX(t) 4+ (— AX(t) — F(X(t)))dt = (I + GX(t)) dW(t)
Here X € L2(D) for a bounded domain D C RY, d = 1,2, 3, convex or with C?
boundary dD. —A : Dom(—A) = W22(D) C L?(D) — L?(D) is a densely
defined, positive definite linear operator with orthonormal eigenbasis

(e, A)) 2y where Ay = /¢
by Weyl's law. We consider D for which (e;, A;) are known. E.g., D = (0, 1) with
ei(x) = V2sin(jrx),  and \; =72
A natural example of F is a composition (Nemytskii) mapping:
(F(u))(x) = f(u(x))

where f: R — R is sufficiently smooth with bounded derivatives.
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The General SPDE

We consider

dX(t) + (AX(t) — F(X(¢t))) dt = (I + GX(t)) dW(t)
on Hilbert space H = (H,(-,-), || - ||) and where: A: Dom(A) C H— His a
densely defined, positive definite linear operator with orthonormal eigenbasis

(e, Aj));il, where \; = j* for some v >0

oo
Fractional operators  A'v := Z A (ej,v)eg for reR
Jj=1

Extension of norm: || - || 5, := ||A”/2 - || and associated Hilbert space

G Dom(A™/2) r>0
IR A r<o,
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Q-Wiener process on Hilbert Space
W is a Q—Wiener process, meaning it has independent increments
W(t+ At) — W(t) ~ N(0, AtQ).
Here, for any ¢, € H,t >0,
E[(W(t), ¢) (W(t),9)] = t(Q¢, ¥),

for Q € L] (H) being a covariance operator (non-negative, trace-class,
self-adjoint) with eigenpairs (e, ux) (same eigenbasis as operator Al).

oo
Representation: W(t) = Z VI;Bi(t)e
j=1

with Bj(t) independent, scalar-valued Brownian motions, defined on a complete
probability space (2, F, (F¢)eepo, 1), P)-

The noise operator G € L(H, L2(QY?(H), H)) is specified later.
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Q-Wiener process

W(t,x)

Figure 1: Regularity of W depends on decay rate of (1 = g;)
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Mild solution?

If Xp is Fo—measurable and Xy € LP(Q, H), then there exists a unique mild
solution in C([0, T], LP(£2, H)) to the SPDE

dX(t) + (AX(t) — F(X(¢))) dt = (I + GX(t)) dW(t), te€ (0, T]
X(0) = Xo.

Definition: a mild solution is an H-valued predictable process {X(t)}:cqo, 7]
satisfying

X(t)=e "X + / t e IF(X(s)) ds + / t e M (1 4 GX(s)) dW(s)

for each t € [0, T]. Here, e "te; = e V'e;.

2Da Prato, G. & Zabczyk, J. Stochastic equations in infinite dimensions. Second, xviii+493

(Cambridge University Press, Cambridge, 2014).
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Overview

© Monte Carlo methods for approximating E[W(X(T))]
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Multilevel Monte Carlo (MLMC)3

Let X,(‘,/’ be a general numerical method with respect to integers M (e.g.
timesteps) and N (e.g. eigenfunctions), and let W : H — U, for a real separable
Hilbert space space U = (U, (-,)u, || - ||v)-

For integer sequences (M;)?°, and (N;)32,, consider the telescoping sum

L
Me_
E[W(Xy (T)] = > BNV (T)) = WXy, ()] + V(X (T))].
=1
This motivates the MLMC estimator based on sample averages E,,,

L
e = Y Em [WX(T)) = WX (T + Emg [V (X (T))].
(=1

We assume that (here and below we ignore logarithmic terms!):

Cost(W(X{") = MN.

3Giles, M. B. Multilevel monte carlo path simulation. Operations research 56, 607-617
(2008).
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Multilevel Monte Carlo (MLMC)

Central point: given that
[WX(T) = WXV (T 2,y S M7+ N2
for some f31, B2 > 0, then with M, = 2¢ and N, ~ 2°¢/5-
WG (T)) = (X, (D), S 277

so very few samples m; needed when ¢ > 1.
Performance*: For any ¢ > 0, there exists (m;); C N s.t.

Eflum — ENW(X(T)]IIZ] < €2

with, given weak convergence rates a1, ay,

Cost(um) < 5727""3’((0’%) <P max (0, 3+ ;1)

. -2l L —2-2 +
Monte Carlo cost ise = e 22 <¢ ( 52)

4Chada, N. K., Hoel, H., Jasra, A. & Zouraris, G. E. Improved efficiency of multilevel Monte
Carlo for stochastic PDE through strong pairwise coupling. J. Sci. Comput. 93, Paper No. 62,
29 (2022).
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Multi-index Monte Carlo (MIMC)?

Consider the telescoping double-sum

BT = 37 5 BLWOG) — W) — o )+ w(xi )|

£1=0£,=0

=:A,W(X)

with W(X, M?(T)) = 0 whenever min({1, () < 0.
This motivates the MIMC estimator

=Y Em [80W(X))]

LeT

where Z = {£ = ({1,0,) € N3 | max(/1,f) < L} and (me)eenz C N.

5Haji—A|i, A.-L., Nobile, F. & Tempone, R. Multi-index Monte Carlo: when sparsity meets
sampling. Numerische Mathematik 132, 767-806 (2016).
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The index set

Triangular index sets are more efficent than rectangular ones, so for some suitable
weights (wy, wp) we actually use:

1= {E S Ng ‘ wil1 + woly < L(E)}
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MIMC for SPDE for general numerical method
Theorem

Suppose that W(XY(T)) — W(X(T)) as M, N — co. Assume also that we have
a multiplicative bound on the second order difference

1AW (X)|[32(q.0) S 2700
for 31,82 > 0. Then, there is o; > [3;/2 such that
IE[AV(X)][|y S 27 btk
and there exist MIMC parameters T and (mg) C N s.t.

I = ENW(X(T)]I 2.0y S €2
with Cost(um) =~ e 2"2“|loge 1|

for some 0 < r < 4+ 2u and

2u = max (0, 1-5 1_62)

(651 ’ (6%)
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MIMC for SPDE for general numerical method
Theorem

Suppose that W(XY(T)) — W(X(T)) as M, N — co. Assume also that we have
a multiplicative bound on the second order difference

18| q, ) S 27 P—Pate=d maxtavts)
for B1, 82 > 0. Then, there is au; > f3;/2 such that
[E[A(X)] [y 2 na0ata=(0/2 mts 0620
and there exist MIMC parameters T and (mg) C N s.t.

lar = ENW(X(T)]I 2.0y S €2
with Cost(um) =~ e 2"2“|loge |

for some 0 < r < 4+ 2u and

1 1 v+1
ou=2max(0,—— —1 -1 -27T° _4
( B+ Bo v + B2 )
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Time-discretization

o Applied to the Zakai equation discretized by finite differences and implicit
Milstein, MIMC does not outperform MLMCE.

@ Analysis was done using Fourier analysis. Complexity was shown to be
improved depending on the used discretisation.

@ We also started with applying MIMC for the SPDE's considered here with
Backward Euler, and did not see an improvement of MIMC over MLMC (one
has to trade spatial regularity for temporal regularity).

@ Need to choose a suitable discretization schemel!

SReisinger, C. & Wang, Z. Analysis of multi-index Monte Carlo estimators for a Zakai SPDE.
English. J. Comput. Math. 36, 202-236 (2018).
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Overview

© Accelerated exponential integrator method
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Accelerated exponential integrator method’

A spectral numerical method employing a semigroup shift.
Let T >0, M eNand Py : H— Span(ey,...,en) =: Hy be orthogonal
projection.

XU 2 [0, T] — Hy given by

t
XM (t) = e APy Xy + / e A=) Py F(XA (s 1)) ds
0

+ / A=) Pyl 4 GXY([5] ) AW(5)
0

where |t|py-1 = max{jT/M : jT/M<t,j=0,1,2,... , M}.
Note: When @ and A share an eigenbasis and when F is nonlinear, iterations can
often be solved using FFT at an additional log-cost.

7Jentzen, A. & Kloeden, P. E. Overcoming the order barrier in the numerical approximation
of stochastic partial differential equations with additive space-time noise. English. Proc. R. Soc.
Lond., Ser. A, Math. Phys. Eng. Sci. 465, 649-667 (2009).
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Assumptions on Xy, Q, G

For a regularity parameter r € (0,2):
@ XoeL9Q, H"”") is Fo-measurable,
Ly - ) .
@ QV2(H) S H 1 ie, Y, Ay < o0

@ G is a linear operator on the spectrum of A:

(Gu)v = (i{u, ej1m) (v, &)e;,

j=1
for a shift m € Ny and a sequence ((;)22; C R fulfilling

1/2 g9
Kj“@'/ < C>\j :,
for some 1> § > 0, and ensuring that G € L(H, Lo(QY/?(H), Hs+-1)).
When m # 0, an Euler-Maruyama scheme is not equivalent to a Milstein one

(otherwise we would obtain improved convergence rate w.r.t. M).
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Assumptions on F

Original assumptions®: F: H — H is twice Fréchet differentiable and

|F'(u)vgy-r < Cllvllgy-., forre{0,1,2} and all u,v € H

IF"()(v, W)l e < ClIvilmsIWlgos, for all w,v € H

for C ind. of u. If F is a composition operator in L?(D), this implies linearity.

Instead: Let F € GY(H, H) N G?(H, H™") for some 7 € [0, 2).
@ ||F'(u)v] < Clv| for all u,v € H,
[F(u) = F(V)ll e < C(L+ |Jul%, + ||V]3,.) for all u,v € H",

@
@ [F (vl < CO+ullD)|v] - forall ue A, v e H and
Q

IF"(u) (v va)llgn < Cllvallllval for all u, vi, va € H.

8Jentzen, A. & Kloeden, P. E. Overcoming the order barrier in the numerical approximation
of stochastic partial differential equations with additive space-time noise. English. Proc. R. Soc.
Lond., Ser. A, Math. Phys. Eng. Sci. 465, 649-667 (2009).
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Computation

The exponential integrator approximation X,\’)/’ of the SPDE is now given by
X{M(0) ;= PyXo and for j € {0,...,M — 1}, At = T/M, t; = jAt, by

X (t111) = e 22X (1) + /tj+1 e A=) pyF(XY (1)) ds
t
+ / e A=) (Py + GXJ (1)) dW(s).
g
Note that
< / e A9 (P + GXN' (1)) AW(s), ek>
£

1 i1
= 1 (14 o (X (1), 6k+m>)/ e 5175 4By (s)
t;

-

if k < N and 0 otherwise, meaning the stochastic term can be sampled exactly.
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Regularity and error estimates
Recall that A\ =~ k" for some v > 0. Given the assumptions above:

Theorem

For N> N,M > M and a known Cy, C >0

@ sup, [IXY (D17, n) < ©

@ sup, HX,\'A,/’( ) — Xy(t ))||,_,, am < CANf = N7,

@ sup, |\X,(\,7’(t) — XMt )||LP(QH < min(CM~min(=1) ' CyM~1)  and
Q SlipHX,%Z( ) = Xi/ () = Xy () + Xy (1) |2, m)

M=~ Kk €(0,1/2)
< CAY S M~ min(MF=INL" 1) k€ [1/2,1)
M-t k€ [1,2)
V.
2 bk k€ (0,1/2)

yields  E[||AV(X)|}] < { 27 rlarvl-(-rmax(ti-vh0) ke [1/2 1)
2t ts K €[1,2)
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Proof ideas

X5 (£) = Xif (1) = Xg' (1) + Xa/ (1)
= e M(Py — Py — Py + Pn)Xo

t
+/ e—Alt—s) [second order difference for PF](s)ds
0
t
+/ e At=%)[second order difference for PG](s) dW/(s)
0
t
+/ e APy — Py — Py + Py) dW(s).
0

Neither the initial term nor the additive stochastic term directly contribute to
either the spatial or the temporal part of the error!
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Proof ideas
Focus on PF:

PRFOXE (Is]ir-1)) = PuF (XN (Is) 1)) = PrF (X (sl 1)) + PuF X (5] )

= Pa(l = P)(FOK (s)ia-) = FOK (1s)u-1))

+ Pu (FOK (1)) = FOW (L)1) = FOR (s lu-2)) + FOK (15 ]1-1)))

+ P (FO (s a-)) = FOW (L)1) = FOE (L)1) + FO (L))
Then

[ e~ PO Us)-1)) ~ FOXE (s 1))

0 12(Q,H)
t 3 £ AGs _
5/0 (= Pi)A™Z (el A% e e (X (Ls) 1)) — FOSE (Ls =) L2y
Here

(= Pn)A™ 2 || 2y = 10 = P)ll sqrim iy < At

N+1
and critically

K _A(t— —A(t— —k/2
A% e N 2oy = [l gy pamy S (£ —5)7
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Proof ideas

Repeated use of the mean value theorem, e.g.,
FOXE (LsIw-1)) — FO (s 1)) — FOX(Ls 1)) + FOX (L5 1))
—/ F(.. )(X'(LsJM D) = X (L) = Xa (L5 =) + Xa' (L5 y-)) A

[ E D sl = X s he-s) O 1) = X [5]-) a5,
Using single-difference bounds, and use BDG inequality to deal with G, conclude with

Gronwall inequality.

We derive sharper rates for E[||A¢W(X)||}] when W is linear.
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Summary of Computational Complexities
For different Monte Carlo based methods, the cost is O( =272 [log(¢~1)|")
@ For Monte Carlo, r =0 and

1 1 1 1
=<t 4L
ar Qo min(1,k) kv
@ For MLMC, r <2+ 2u and
1+ min(1,2x)/(kv) — min(1,2k)
min(aq, ax min(1, 2k)/(kv))

2u = max <O,

1 1
<2 e+ — -1
= cmax <0' min(1, k) * KV >

@ For MIMC

2u=max [ 0, l—mln(m,l)’ 1—wv < 2max 0,; flﬁi -1
a7 s min(1, k) 5%

and r < 4 4 2u. Moreover, when « € [1,2),

. 2 if kv>1
)4 if kv=1.
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Overview

@ Numerical experiments and conclusion
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Verification of multiplicative convergence rate

Test for Qol W(x) = x and seek to verify multiplicative convergence property

186X | 2(,H) = V Em=10:[[| 8 X[[?] =: €(£1, £2)

with M, =~ N, =~ 2.
When k > 1, our sharp theoretical rates are:

|18eX][Z2(q,my & CNp, "™ min(My, ", N;,"™)

Numerical verification: Find 31, 8> > 0 by a least square fit, such that
p*(€1,03) == C min(2~Prh=Fate p=26262)

dominates e(¢1, ¢>) and verify that 51 ~ 1, > ~ vk, when k = 1 and v = 4/3.

For plotting, log,(p(¢1, £2)) for a product p(¢1,¢2) would be a plane over (¢1, 7).

Note: Monte Carlo cost is O(e75%), MLMC cost is O(s~3%).
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Numerical test |

SPDE with A = 0.2(—A)?3 on D = (0,1). Choose Q such that # < 1.01 and
let f(x) = x. Plot e and p in loglog scale.

-2
9 -4
-6
7
-8
<
5 -10
12
3
-14
1 -16
1 3 5 7 9 1 3 5 7 9

A 4

Left: e(él,fg). Right p(él,£2) with 51 =0.98, 52 =1.62.
Expected rates: 5; =1 and 3, = 4/3.
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Numerical test Il

Performance comparison MLMC vs MIMC, linear case.

\—MLMC -~ MIMC - 3(5‘ ‘—MLMC -~ MIMC -~ x =% =& log(e)?

1012.

1072
1010 "

107 1084
1084

10-¢

10—3.0 10-25 10-20 10-1.5 10—1.0 10—3.0 10-25 10—2.0 10-15 10-1.0
€ €

Left: Error ||umi(e) — E[X(1)]]|?. Right: Cost(umi(€))
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Numerical test Il

SPDE with A = (—A)%/3 on D = (0,1). Choose Q such that x < 1.01 and let
f(x) = sin(mx).

Left: e(él,fg). Right: p(él,£2) with 81 = 1.24, B, = 1.74.
Expected rates: 5; =1 and 3, = 4/3.

30/33



Numerical test IV

Performance comparison MLMC vs MIMC, nonlinear case.

[—MLMC ~MIMC -+ x&?

‘—MLMC - MIMC' --oce *log(e)| -+ oce *log(e)?

1072 e 1074
10‘2.
10104
108

10°

10730 10725 10-20 10715 10-10

Left: Error ||umi(e) — E[X(1)]]|?. Right: Cost(umi(€))
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Summary and future work

@ Developed efficent multi-index Monte Carlo method for approximations of
semilinear SPDE

@ We obtain high convergence in space and can handle sufficiently
differentiable composition mappings F

@ Restriction: Operators @ and A have to share eigenbasis (e) on which G
acts

@ Future work: Extension to finite element exponential integrators
@ Future work: Nonlinear G acting on the eigenbasis

o Future work: Sharp rates in time for G = 0 using stochastic sewing®

9Djurdjevac, A., Gerencsér, M. & Kremp, H. Higher order approximation of nonlinear SPDEs
with additive space-time white noise. arXiv preprint arXiv:2406.03058. arXiv: 2406.03058
[math.PR]. https://doi.org/10.48550/arXiv.2406.03058 (June 2024).
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Other notions of solutions

An H-valued predictable process {X(t)}:c[o, 1] is called:
@ a strong solution of the SPDE if for all ¢t € (0, T],

t

X(t):Xo+/0 F(X(s))—AX(s)ds—i—/O (I + GX(s)) dW(s).

Problem: Need that X € Dom(A), and often it is not that smooth.
@ a weak solution of the SPDE if for all t € (0, T] and v € Dom(A)

(X(1),v) =(Xo,v) +/0 (F(X(s)),v) = (X(s),Av) ds

+/0 (1 + GX(s)) dW(s), v).

Relationship®: Strong solutions are weak solutions and weak solutions are
typically mild solutions.

101y, W. & Réckner, M. Stochastic partial differential equations: an introduction. (Springer,
2015).
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Motivation

Regularity: The semigroup e At

is smoothing:

— Mt

le M llcmy = lle e = e Mt <1

So that
le™ " Xoll = AV 2e™ X0 || < [le™ M AY2X0|| < [[AY2X||.
And ||Al/2g—At (H) < Ct~1/2 ysed to bound H!-norm of other terms, e.g.,
(H)
t
1 PUF Oy s

t
:/ |AY2e=AE=2) Py F (XM (5)) | (i ds
0

t
<c / (t — s) "2 PuF(XM(5)) | (i ds
0
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Motivation

Numerical error: bound by

IX(T) = X§' (T < | X(T) = PuX(T)|| + | PuX(T) = Xy'(T)]| -

spatial error time error

Spatial error:
(1 = PWX(T)I| = |A72(1 = PW)AY2X(T)|| < A2 = Pu)ll ey

and
IATY2(1 = Pr) ey = A7Y2(1 = Pr)enall = Ay
Time error:
IPNX(T) = X§(T) | e(ty = O(VAL)

is same rate as Euler—Maruyama has for N-dimensional SDE.
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Negative norm bounds
Negative norm bounds on F,
IF' (@l < COHlullghIvlig-. re{ln—3), ueH . veH,
follow from a duality argument applied to
[
)
in the case that F’(u) is symmetric on H.
Case that A= —A on H = L2(D) with zero Dirichlet b.c. and F is a composition

mapping: Identify H" with W"2 or Wor’2 and note (F'(u)v)(:) = ' (u(:))v(").
Use Sobolev embedding and multiplication theorems with € (d/2,2) to deduce

IF (vl < C(1+ ||l

WVlgm, re{l,x—208}, weHveH"

Lemma

For k < min(n,1) and f twice differentiable with bounded derivatives:
IF ()vllwes S lullweevlwne o€ We2,v e wre,

For k € (1,n),d <2 and f thrice differentiable with bounded derivatives:

IF (u)Vlwe—s2 S @+ ulldye)VIiwne uve W2 ve W2 §>0.
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