Multilevel Monte Carlo and Path Branching for Digital Options

Abdul-Lateef Haji-Ali
Joint work with Mike Giles (University of Oxford)

Heriot-Watt University

MCM — August 18, 2021

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \le 1$

$$dX_t = a(X_t, t) dt + \sigma(X_t, t) dW_t.$$

Let $(\mathcal{F}_t)_{0 \leq t \leq 1}$ be the natural filtration of W_t .

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \le 1$

$$\mathrm{d}X_t = a(X_t, t)\,\mathrm{d}t + \sigma(X_t, t)\,\mathrm{d}W_t.$$

Let $(\mathcal{F}_t)_{0 \le t \le 1}$ be the natural filtration of W_t .

We want to price a digital option of the form (dropping discounting)

$$\mathbb{P}[X_1 \in K] = \mathbb{E}[\mathbb{I}_{X_1 \in K}]$$

for some $K \subset \mathbb{R}^d$. Let $\{\overline{X}_t^\ell\}_{t=0}^1$ be an approximation of the path $\{X_t\}_{t=0}^1$ at level ℓ using $h_\ell^{-1} \equiv 2^\ell$ timesteps.

The problem: Pricing a Digital option

Let X_t be a d-dimensional stochastic process satisfying the SDE for $0 < t \le 1$

$$dX_t = a(X_t, t) dt + \sigma(X_t, t) dW_t.$$

Let $(\mathcal{F}_t)_{0 \le t \le 1}$ be the natural filtration of W_t .

We want to price a digital option of the form (dropping discounting)

$$\mathbb{P}[X_1 \in K] = \mathbb{E}[\mathbb{I}_{X_1 \in K}]$$

for some $K \subset \mathbb{R}^d$. Let $\{\overline{X}_t^\ell\}_{t=0}^1$ be an approximation of the path $\{X_t\}_{t=0}^1$ at level ℓ using $h_\ell^{-1} \equiv 2^\ell$ timesteps.

For $|\mathbb{E}[\mathbb{I}_{X_1 \in \mathcal{K}} - \mathbb{I}_{\overline{X}_1^\ell \in \mathcal{K}}]| \lesssim h_\ell^{\alpha}$, a Monte Carlo estimator of $\mathbb{E}[\mathbb{I}_{X_1 \in \mathcal{K}}]$ has computational complexity $\varepsilon^{-2-\alpha}$ to achieve MSE ε .

Multilevel Monte Carlo

Consider a hierarchy of corrections $\{\Delta P_\ell\}_{\ell=0}^L$ such that

$$\mathbb{E}[\,\Delta P_\ell\,] = \begin{cases} \mathbb{E}\big[\,\mathbb{I}_{\overline{X}_1^0 \in \mathcal{K}}\,\big] & \ell = 0 \\ \mathbb{E}\big[\,\mathbb{I}_{\overline{X}_1^\ell \in \mathcal{K}} - \mathbb{I}_{\overline{X}_1^{\ell-1} \in \mathcal{K}}\,\big] & \text{otherwise}. \end{cases}$$

MLMC can be formulated as

$$\mathbb{E}\big[\mathbb{I}_{X_1 \in \mathcal{K}}\big] = \sum_{\ell=0}^{\infty} \mathbb{E}[\Delta P_{\ell}] \approx \sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M} \Delta P_{\ell}^{(m)}$$

Multilevel Monte Carlo

Consider a hierarchy of corrections $\{\Delta P_\ell\}_{\ell=0}^L$ such that

$$\mathbb{E}[\,\Delta P_\ell\,] = \begin{cases} \mathbb{E}\big[\,\mathbb{I}_{\overline{X}_1^0 \in \mathcal{K}}\,\big] & \ell = 0 \\ \mathbb{E}\big[\,\mathbb{I}_{\overline{X}_1^\ell \in \mathcal{K}} - \mathbb{I}_{\overline{X}_1^{\ell-1} \in \mathcal{K}}\,\big] & \text{otherwise}. \end{cases}$$

MLMC can be formulated as

$$\mathbb{E}\big[\mathbb{I}_{X_1 \in K}\big] = \sum_{\ell=0}^{\infty} \mathbb{E}[\Delta P_{\ell}] \approx \sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M} \Delta P_{\ell}^{(m)}$$

Assuming

$$\operatorname{Var}[\Delta P_\ell] \lesssim h_\ell^{eta_\mathsf{d}}, \qquad |\mathbb{E}[\Delta P_\ell]| \lesssim h_\ell^{lpha}, \qquad \operatorname{\mathsf{Work}}(\Delta P_\ell) \lesssim h_\ell^{-1}$$

then to compute with MSE ε^2 the complexity of MLMC is $\mathcal{O}(\varepsilon^{-2+\max((\beta_d-1),0)/\alpha})$ when $\beta_d \neq 1$ and $\mathcal{O}(\varepsilon^{-2}|\log \varepsilon|^2)$ otherwise. E.g. Euler-Maruyama has $\alpha=1$ and $\beta_d \approx 1/2$ and complexity is $\mathcal{O}(\varepsilon^{-5/2})$.

Conditional Expectation and Path Splitting

For some $0 < \tau < 1$, let

$$\Delta Q_{\ell} \coloneqq \mathbb{E}[\Delta P_{\ell} | \mathcal{F}_{1-\tau}].$$

Note

Conditional Expectation and Path Splitting

For some $0 < \tau < 1$, let

$$\Delta Q_\ell \coloneqq \mathbb{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1- au}\,].$$
 Note $\mathbb{E}[\,\Delta Q_\ell\,] = \mathbb{E}[\,\Delta P_\ell\,].$

We can consider the MLMC estimator based on ΔQ_{ℓ} instead of ΔP_{ℓ} . The work and (hopefully improved) variance convergence of ΔQ_{ℓ} becomes relevant.

Conditional Expectation and Path Splitting

For some $0 < \tau < 1$, let

$$\Delta Q_\ell \coloneqq \mathbb{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1- au}\,].$$
 Note $\mathbb{E}[\,\Delta Q_\ell\,] = \mathbb{E}[\,\Delta P_\ell\,].$

We can consider the MLMC estimator based on ΔQ_{ℓ} instead of ΔP_{ℓ} . The work and (hopefully improved) variance convergence of ΔQ_{ℓ} becomes relevant.

Computing ΔQ_{ℓ} :

- In 1D, taking $\tau \equiv h_\ell$ and using Euler-Maruyama for the last step we know that the conditional distribution of ΔP_ℓ given $\mathcal{F}_{1-\tau}$ is Gaussian and we can compute ΔQ_ℓ exactly.
- More generally, for any method and any τ , we can use path splitting (Monte Carlo) with sufficient number of samples, leading to increased work.

See, e.g., Glasserman (2004) and Burgos & Giles (2012) for more information on this method (for computing options and sensitivities).

Path splitting to estimate ΔQ_ℓ

• When $\tau \to 0$, i.e., splitting late,

$$\operatorname{Var}[\,\Delta \mathit{Q}_{\ell}\,] \leq \mathbb{E}\Big[\,(\mathbb{E}[\,\Delta \mathit{P}_{\ell}\,|\,\mathcal{F}_{1-\tau}\,])^2\,\Big] = \mathbb{E}\Big[\,(\Delta \mathit{P}_{\ell})^2\,\Big] = \mathcal{O}(\mathit{h}_{\ell}^{\beta_{\mathsf{d}}})$$

• When au o 1, i.e., splitting early,

$$\operatorname{Var}[\Delta Q_{\ell}] \leq \mathbb{E}\Big[\left(\mathbb{E}[\Delta P_{\ell} \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] = \left(\mathbb{E}[\Delta P_{\ell}\,]\right)^2 = \mathcal{O}(h_{\ell}^{2\beta_{\mathsf{d}}})$$

Hence we want to take au o 1, but the cost per inner sample increases; paths are approximated over [1- au,1] for every sample.

Path splitting to estimate ΔQ_ℓ

• When $\tau \to 0$, i.e., splitting late,

$$\operatorname{Var}[\,\Delta \mathit{Q}_{\ell}\,] \leq \mathbb{E}\Big[\,(\mathbb{E}[\,\Delta \mathit{P}_{\ell}\,|\,\mathcal{F}_{1-\tau}\,])^2\,\Big] = \mathbb{E}\Big[\,(\Delta \mathit{P}_{\ell})^2\,\Big] = \mathcal{O}(\mathit{h}_{\ell}^{\beta_{\mathsf{d}}})$$

• When $\tau \to 1$, i.e., splitting early,

$$\operatorname{Var}[\,\Delta \,Q_\ell\,] \leq \mathbb{E}\Big[\,(\mathbb{E}[\,\Delta P_\ell\,|\,\mathcal{F}_{1-\tau}\,])^2\,\Big] = (\mathbb{E}[\,\Delta P_\ell\,])^2 = \mathcal{O}(h_\ell^{2\beta_\mathsf{d}})$$

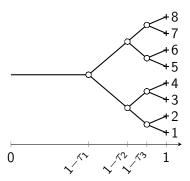
Hence we want to take $\tau \to 1$, but the cost per inner sample increases; paths are approximated over $[1-\tau,1]$ for every sample.

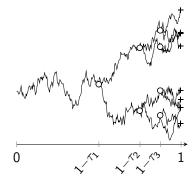
Solution: More splitting! For $\tau' > \tau$

$$\begin{split} \Delta \mathcal{Q}_{\ell}' &= \mathbb{E}[\,\Delta \mathcal{Q}_{\ell} \,|\, \mathcal{F}_{1-\tau'}\,] \\ &= \mathbb{E}[\,\mathbb{E}[\,\Delta P_{\ell} \,|\, \mathcal{F}_{1-\tau}\,] \,|\, \mathcal{F}_{1-\tau'}\,] \end{split}$$
 Again
$$\mathbb{E}[\,\Delta \mathcal{Q}_{\ell}'\,] &= \mathbb{E}[\,\Delta P\,] \end{split}$$

Path Branching

- Let $1 \tau_{\ell'} = 1 2^{-\ell'}$ for $\ell' \in \{1, \dots, \ell\}$.
- For every ℓ' , starting from $X_{1-\tau_{\ell'}}$ at time $1-\tau_{\ell'}$, create two sample paths $\{X_t\}_{1-\tau_{\ell'}\leq t\leq 1-\tau_{\ell'+1}}$ which depend on two independent samples of the Brownian motion $\{W_t\}_{1-\tau_{\ell'}\leq t\leq 1-\tau_{\ell'+1}}$.
- Evaluate the payoff difference $\Delta P_\ell^{(i)}$ for every $X_1^{(i)}$ for $i \in \{1,\dots,2^\ell\}$
- Define the Monte Carlo average as $\Delta \mathcal{P}_\ell \coloneqq 2^{-\ell} \sum_{i=1}^{2^\ell} \Delta \mathcal{P}_\ell^{(i)}$





Main Assumptions & Bounds

Assumption

Assume that there exists $\beta_{\rm d}, \beta_{\rm c}, p>0$ such that for all $\tau>h_\ell$

$$\mathbb{E}[(\Delta P_\ell)^2] \lesssim h_\ell^{\beta_\mathsf{d}}$$

and

$$\mathbb{E} \Big[\left(\mathbb{E} \big[\Delta P_\ell \, | \, \mathcal{F}_{1-\tau} \, \big] \right)^2 \Big] \lesssim h_\ell^{\beta_{\mathsf{c}}} / \tau^{1/2}$$

Theorem (Work/Variance bounds)

$$\mathbb{E}[\,\Delta\mathcal{P}_\ell\,] = \mathbb{E}[\,\Delta P_\ell\,]$$

$$\mathsf{Work}(\Delta \mathcal{P}_\ell) \lesssim \ell \, h_\ell^{-1}$$

$$\operatorname{Var}[\Delta \mathcal{P}_{\ell}] \lesssim h_{\ell}^{\beta_{\mathsf{d}}+1} + h_{\ell}^{\beta_{\mathsf{c}}}$$

Proof

$$\begin{aligned} \operatorname{Work}(\Delta \mathcal{P}_{\ell}) & \leq h_{\ell}^{-1} \left((1 - \tau_{1}) + \sum_{\ell'=1}^{\ell-1} 2^{\ell'} (\tau_{\ell'} - \tau_{\ell'+1}) + 2^{\ell} \tau_{\ell} \right) \\ & \lesssim \ell \, h_{\ell}^{-1} \end{aligned}$$

$$\begin{aligned} \operatorname{Var}[\Delta \mathcal{P}_{\ell}] & \leq \mathbb{E} \left[\left(\frac{1}{2^{\ell}} \sum_{i=1}^{2^{\ell}} \Delta P_{\ell}^{(i)} \right)^{2} \right] \end{aligned}$$

$$\leq \frac{1}{2^{\ell}} \mathbb{E}[\Delta P_{\ell}^{2}] + \frac{1}{2^{2\ell}} \sum_{i=1}^{\ell} \sum_{j=1, i \neq j}^{\ell} \mathbb{E}[\Delta P_{\ell}^{(i)} \Delta P_{\ell}^{(j)}] \end{aligned}$$

$$\leq \frac{1}{2^{\ell}} \mathbb{E}[\Delta P_{\ell}^{2}] + \frac{1}{2^{2\ell}} \sum_{i=1}^{\ell} \sum_{j=1, i \neq j}^{\ell} \mathbb{E}[\Delta P_{\ell}^{(i)} \Delta P_{\ell}^{(j)}]$$

$$\leq \frac{1}{2^{\ell}} \mathbb{E}[\Delta P_{\ell}^{2}] + \frac{1}{2^{2\ell}} \sum_{i=1}^{\ell} \sum_{j=1, i \neq j}^{\ell} \mathbb{E}[(\mathbb{E}[\Delta P_{\ell} \mid \mathcal{F}_{1-\tau^{(i,j)}}])^{2}]$$

Simplified Assumptions on SDE solution/Approximation

Assumption (On SDE solution)

Assume that for some $\delta_0>0$ and all $0<\delta\leq\delta_0$ and $0<\tau\leq1$, and let $d_{\partial K}(x)=\min_{y\in\partial K}\|x-y\|$, there is a constant C independent of δ,τ and $\mathcal{F}_{1-\tau}$ such that

$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

Theorem

Assume additionally that there is q>2 and $\beta>0$ such that

$$\mathbb{E}\Big[\left(X_1-\overline{X}_1^\ell\right)^q\Big]^{1/q}\lesssim h_\ell^{\beta/2}$$

Then
$$\beta_{\mathsf{d}} = \frac{\beta}{2} \times \left(1 - \frac{1}{q+1}\right)$$
 and $\beta_{\mathsf{c}} = \beta \times \left(1 - \frac{2}{q+2}\right)$

MLMC Complexity

When q is arbitrary,

$$\beta_{\mathsf{d}} \approx \frac{\beta}{2} \quad \text{and} \quad \beta_{\mathsf{c}} \approx \beta$$

and for $\beta \leq 2$

$$ext{Var}[\Delta \mathcal{P}_\ell] pprox \mathcal{O}(h_\ell^eta)$$
 $ext{Work}(\Delta \mathcal{P}_\ell) = \mathcal{O}(\ell h_\ell^{-1})$

- Using Euler-Maryama: $\beta=1$ and the MLMC computational complexity is approximately $o(\varepsilon^{-2+\nu})$ for any $\nu>0$ and for MSE ε .
- Using Milstein: $\beta = 2$ and the complexity is $\mathcal{O}(\varepsilon^{-2})$.

SDEs with Gaussian Transition Kernels

Lemma

Assume that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic then there is C>0 such that

$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}$$

SDEs with Gaussian Transition Kernels

Lemma

Assume that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic then there is C>0 such that

$$\mathbb{E}\Big[\left(\mathbb{P}[\,d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\,\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}$$

$$\mathbb{E}\Big[\left(\mathbb{P}[\,d_{\partial K}(\exp(X_1)) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\,\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

when ∂K are "nice".

SDEs with Gaussian Transition Kernels

Lemma

Assume that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic then there is C>0 such that

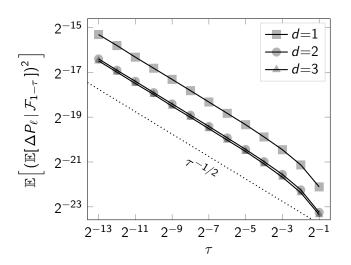
$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}$$

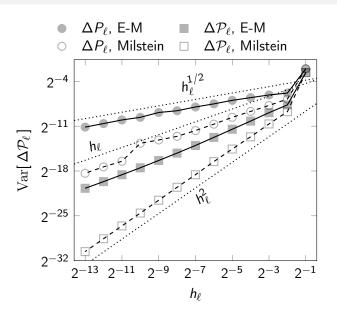
$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(\exp(X_1)) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

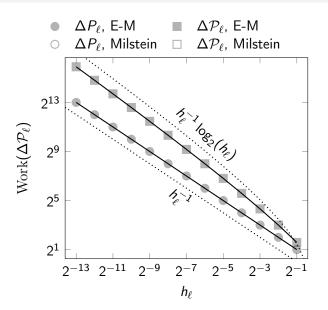
when ∂K are "nice".

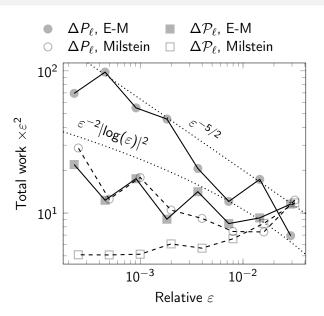
Proof. Based on bounding the conditional density of X_1 by a Gaussian density. E.g.

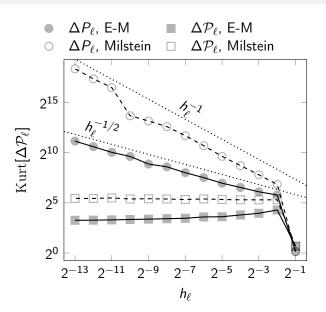
$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}]\right)^2\Big] \\ \lesssim \frac{1}{\tau^{1/2}} \left(\int_{-\delta}^{\delta} \mathrm{d}x\right) \times \mathbb{E}[\mathbb{P}[d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}]] \lesssim \frac{\delta^2}{\tau^{1/2}}$$











For the Clark-Cameron SDE ($\mathrm{d}X_t = W_{1,t}\,\mathrm{d}W_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

For the Clark-Cameron SDE ($\mathrm{d}X_t = W_{1,t}\,\mathrm{d}W_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy area set to zero). Applying to digital options we set

$$\Delta P_{\ell} = \begin{cases} \mathbb{I}_{\overline{X}_{1}^{\ell} \in K} & \ell = 0\\ \frac{1}{2} \left(\mathbb{I}_{\overline{X}_{1}^{\ell} \in K} + \mathbb{I}_{\overline{X}_{1}^{\ell,(a)} \in K} \right) - \mathbb{I}_{\overline{X}_{1}^{\ell-1} \in K} & \ell > 0 \end{cases}$$

where \overline{X}_1^ℓ and $\overline{X}_1^{\ell,(a)}$ are an identically distributed antithetic pair.

For the Clark-Cameron SDE ($\mathrm{d}X_t = W_{1,t}\,\mathrm{d}W_{2,t}$), using a Milstein scheme requires sampling Lévy areas.

Giles & Szpruch (2014) proposed an antithetic Milstein scheme (with Lévy area set to zero). Applying to digital options we set

$$\Delta P_{\ell} = \begin{cases} \mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} & \ell = 0\\ \frac{1}{2} \left(\mathbb{I}_{\overline{X}_{1}^{\ell} \in \mathcal{K}} + \mathbb{I}_{\overline{X}_{1}^{\ell,(a)} \in \mathcal{K}} \right) - \mathbb{I}_{\overline{X}_{1}^{\ell-1} \in \mathcal{K}} & \ell > 0 \end{cases}$$

where \overline{X}_1^ℓ and $\overline{X}_1^{\ell,(a)}$ are an identically distributed antithetic pair.

We have for all q > 2

$$\mathbb{E} \Big[\left\| X_1 - \overline{X}_1^{\ell} \right\|^q \Big]^{1/q} \leq C h_{\ell}^{1/2}$$
 and
$$\mathbb{E} \Big[\left\| \frac{1}{2} (\overline{X}_1^{\ell} + \overline{X}_1^{\ell,(a)}) - \overline{X}_1^{\ell-1} \right\|^q \Big]^{1/q} \leq C h_{\ell}.$$

Lemma (Antithetic rates)

Under certain assumptions on $g(x,t) = \mathbb{E}[\mathbb{I}_{X_1 \in K} | X_t = x]$ and its derivatives, we have

$$\mathbb{E}[(\Delta P_{\ell})^2] \lesssim h_{\ell}^{1/2(1-1/(q+1))}$$
and
$$\mathbb{E}\Big[(\mathbb{E}[\Delta P_{\ell} \mid \mathcal{F}_{1-\tau}])^2\Big] \lesssim h_{\ell}^{2(1-5/(q+5))}/\tau^{3/2}.$$

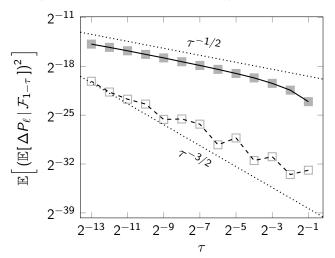
In other words

$$\beta_{\mathsf{d}} = \frac{1}{2} \times \left(1 - \frac{1}{q+1}\right) \qquad \mathsf{and} \qquad \beta_{\mathsf{c}} = 2 \times \left(1 - \frac{5}{q+5}\right).$$

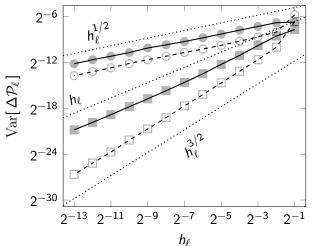
When q is arbitrary, we show that for any $\nu > 0$,

$$\operatorname{Var}[\Delta \mathcal{P}_{\ell}] \lesssim h_{\ell}^{3/2-\nu}$$

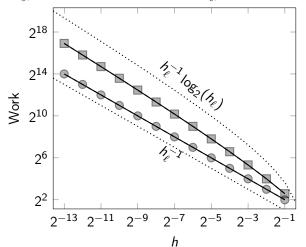
- ΔP_{ℓ} , E-M ΔP_{ℓ} , E-M
- \bigcirc $\triangle P_{\ell}$, Antithetic Milstein \square $\triangle P_{\ell}$, Antithetic Milstein



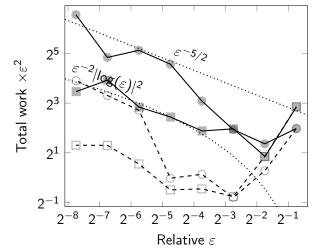
- lacktriangledown ΔP_ℓ , E-M
- \bigcirc $\triangle P_{\ell}$, Antithetic Milstein \square $\triangle \mathcal{P}_{\ell}$, Antithetic Milstein



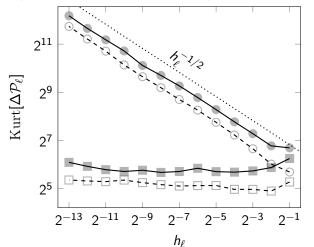
- ΔP_{ℓ} , E-M $\qquad \qquad \Delta P_{\ell}$, E-M
- \bigcirc $\triangle P_{\ell}$, Antithetic Milstein \square $\triangle P_{\ell}$, Antithetic Milstein



- ΔP_{ℓ} , E-M ΔP_{ℓ} , E-M
- \bigcirc $\triangle P_{\ell}$, Antithetic Milstein \square $\triangle \mathcal{P}_{\ell}$, Antithetic Milstein



- lacktriangledown ΔP_ℓ , E-M
- \bigcirc $\triangle P_{\ell}$, Antithetic Milstein \square $\triangle P_{\ell}$, Antithetic Milstein



Final points

- We also consider a sequence $\tau_{\ell'}=2^{-\eta\ell'}$ for some $\eta>0$. For $\eta>1$, this reduces the work of $\Delta\mathcal{P}_{\ell}$ to $\mathcal{O}(2^{\ell})$.
- More theoretical and numerical analysis for antithetic estimators.
- A modular analysis: Application to other problems involving conditional expectations and filtrations can be done by proving assumptions.
- Other applications:
 - Pricing other options (Barrier).
 - Computing sensitivities: Using bumping, the variance increases as the bump distance decreases. Branching can help.
 - Particle systems.
 - Approximate CDFs. Need to tighten theory to deal with increasing number of discontinuities.
 - Parabolic SPDFs.

Elliptic SDEs

Definiton ((Ni) *sets*)

We say that a set $S \subset \mathbb{R}^d$ is an (Ni) set if there exists an orthonormal matrix A and a Lipschitz function f such that $S = A\widetilde{S}$ for the set

$$\widetilde{S} = \{x \in \mathbb{R}^d : f(x_{-1}) = x_1\},\$$

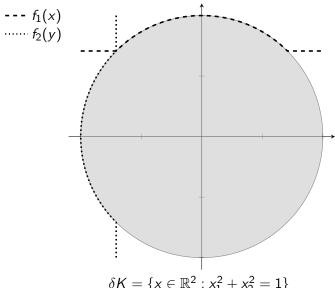
and $A\widetilde{S}$ denoting the image of \widetilde{S} under the transformation $x \to Ax$.

Lemma

For $K \subset \mathbb{R}^d$ assume that $\partial K \subseteq \bigcup_{j=1}^n S_j$ for some finite n and (Ni) sets $\{S_j\}_{j=1}^n$. Assume further that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic then

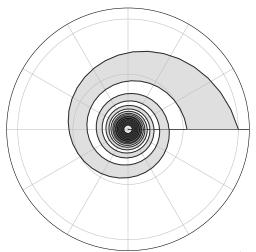
$$\mathbb{E}\Big[\left(\mathbb{P}[d_{\partial K}(X_1) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$

A nice set



$$\delta K = \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1 \}$$

A not-so-nice set



$$\partial K = \{(r,\theta) \in \mathbb{R}_+ \times [0,2\pi] : r = (n+\theta/\pi)^{-\frac{1}{2}}, n \in \mathbb{N}\}$$

Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion $Y_t = \exp(X_t)$?

$$dY_t = aY_t dt + \sigma Y_t dW_t$$
$$dX_t = a dt + \sigma dW_t$$

Exponentials of Elliptic SDEs

What about a Geometric Brownian Motion $Y_t = \exp(X_t)$?

$$dY_t = aY_t dt + \sigma Y_t dW_t$$
$$dX_t = a dt + \sigma dW_t$$

Lemma

For $K \subset \mathbb{R}^d$ assume that $\partial K \subseteq \bigcup_{j=1}^n \exp(S_j)$ for some finite n and (Ni) sets $\{S_j\}_{j=1}^n$. Assume further that a and σ are bounded and uniformly Hölder continuous and σ is uniformly elliptic then

$$\mathbb{E}\Big[\left(\mathbb{P}[\,d_{\partial K}(\exp(X_1)) \leq \delta \,|\, \mathcal{F}_{1-\tau}\,]\right)^2\,\Big] \leq C\,\frac{\delta^2}{\tau^{1/2}}.$$