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The problem: Computing probabilities

P[Z ∈ Ω ] = E[ IZ∈Ω ]

where Z is a d-dimensional random variable and Ω ∈ Rd . This problem
can be written in the form

P[X > 0 ] = E[ IX>0 ]

for a one-dimensional random variable X which is the signed distance of Z
to Ω.

Two main reasons this problem can be challenging:
1 The event is rare,
2 and the complexity of sampling X .
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The problem: Computing probabilities

Financial risk assessment X := E[Y |R ]−MaxLoss

E[ IE[Y |R]>MaxLoss ]

≈ E
[
I 1
N

∑N
i=1 Y

(i)(R)>MaxLoss

]

Digital options X := S(T )− K where S is an asset price satisfying an
SDE and K is the strike price

E[ IS(T )>K ]

≈ E[ ISh(T )>K ]

where Sh is an Euler-Maruyama or Milstein approximations with step
size h.

Component failure: X := g(Y ) where g depends on the solution of a
PDE with random coefficients Y .

E[ Ig(Y ) ]

≈ E[ Igh(T ) ]

where gh is a Finite Element approximation with grid size h.
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Monte Carlo: A General Framework

Focus on
E[ f (X ) ]

for some function f . For our setup, f (X ) := IX>0. Assume we can
approximate X ≈ X` with ` ∈ N

Assumptions

Work of X` is ∝ 2γ`.
Bias: E` := |E[ f (X`)− f (X ) ]| ∝ 2−α`.

When the dimensionality of X is high, best option is to use Monte Carlo

E[ IX>0 ] ≈ 1
M

M∑
m=1

I
X

(m)
L >0

To approximate P[X > 0 ] with an error tolerance ε, need M = O(ε−2)
and L = O( 1

α |log ε|) hence complexity is O(ε−2−γ/α).
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Multilevel Monte Carlo: A General Framework

The MLMC estimator is based on

E[ f (X ) ] = E[ f (X0) ] +
∞∑
`=1

E[ f (X`)− f (X`−1) ]

≈ E[ f (X0) ] +
L∑
`=1

E[ f (X`)− f (X`−1) ]

≈ 1
M0

M0∑
m=1

f (X 0,m
0 ) +

L∑
`=1

1
M`

M∑̀
m=1

f (X `,m
` )− f (X `,m

`−1)
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Multilevel Monte Carlo: A General Framework

Assumptions

Work of X` is W` ∝ 2γ`.
Bias: |E[ f (X`)− f (X ) ]| ∝ 2−α`.
Variance: Var[X` − X`−1 ] ∝ 2−β`.

Theorem
For Lipschitz f , the overall cost of Multilevel Monte Carlo for computing
E[ f (x) ] to accuracy ε using optimal L, {M`}L`=0 is

ε−2 β > γ

ε−2(log ε)2 β = γ

ε−2− γ−β
α β < γ
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Multilevel Monte Carlo: A General Framework

Example
For a standard European call option we have E[ f (X ) ] for X = S(T )− K
and f (X ) = max(X , 0). Approximating S(T ) by Euler-Maruyama satisfies
the previous assumptions with α = β = γ = 1. The complexity is

O
(
ε−3) for Monte Carlo.

O
(
ε−2(log ε)2

)
using Multilevel Monte Carlo.
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Discontinuous f : Key assumptions

Our quantity of interest is E[ IX>0 ] is discontinuous, need a different kind
of analysis.

Assumptions
For all ` ∈ N define

δ` :=
|X`|
σ`
≥ 0,

for some random variable σ` > 0. For all `:

1 There is δ > 0 such that for x ≤ δ we have P[ δ` ≤ x ] . x .

2 There is q > 2 such that(
E
[(
|X` − X |

σ`

)q ])1/q

. 2−β`/2.
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MLMC analysis

Lemma

Var[ IX>0 − IX`>0 ] . 2−
q

q+1 `β/2

Proof. |X − X`| ≈ O(2−`β/2)

Corollary
Computing E[ IX>0 ] to accuracy ε using Multilevel Monte Carlo has cost:


ε−2 β > q+1

q · 2γ
ε−2(log ε)2 β = q+1

q · 2γ

ε
−2−

(
γ− q

q+1β/2
)
/α

β < q+1
q · 2γ
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Previous research

M. B. Giles, D. J. Higham, and X. Mao. “Analysing multi-level Monte Carlo
for options with non-globally Lipschitz payoff”. In: Finance and Stochastics
13.3 (2009), pp. 403–413
Original analysis of classical MLMC for discontinuous payoffs in SDE
example.

M. B. Giles, T. Nagapetyan, and K. Ritter. “Multilevel Monte Carlo
approximation of distribution functions and densities”. In: SIAM/ASA
journal on Uncertainty Quantification 3.1 (2015), pp. 267–295
Deals with similar problems in the generality of the current work. Uses
different method based on smoothing the discontinuity. Assumes
differentiability of PDF and requires further analysis to determine effect of
smoothing parameter on bias/variance.

C. Bayer, C. B. Hammouda, and R. Tempone. “Numerical smoothing and
hierarchical approximations for efficient option pricing and density
estimation”. In: arXiv preprint arXiv:2003.05708 (2020)
Same as above. Smoothes the discontinuity by intergrating using a high
order method with respect to one of the dimensions.
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Previous research (adaptivity)

D. Elfverson, F. Hellman, and A. Målqvist. “A multilevel Monte Carlo
method for computing failure probabilities”. In: SIAM/ASA Journal on
Uncertainty Quantification 4.1 (2016), pp. 312–330
Selective refinement of samples. Based on relaxing the condition. Assumes
uniform almost sure error bounds (works well for PDEs with random
coefficients but not stochastic models).

M. Broadie, Y. Du, and C. C. Moallemi. “Efficient risk estimation via nested
sequential simulation”. In: Management Science 57.6 (2011), pp. 1172–1194
Adaptive sampling for nested expectation with Monte Carlo methods.

M. B. Giles and A.-L. Haji-Ali. “Multilevel nested simulation for efficient risk
estimation”. In: SIAM/ASA Journal on Uncertainty Quantification 7.2
(2019), pp. 497–525. DOI: 10.1137/18M1173186
Adaptive sampling for MLMC applied to nested expectations only. Requires
stronger conditions on the random variables than here.
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Adaptive Multilevel Monte Carlo: Algorithm

Refine samples of X` to X`+η` , where 0 ≤ η` ≤ dθ`e is the smallest integer
for which

δ`+η` ≥ 2
γ
r

(θ`(1−r)−η`)

for constants r > 1 and 0 ≤ θ ≤ 1. Recall that δ` :=
|X`|
σ`
≥ 0.

σ
(1)
` 2−β`/2

X
(1)
`

X
(2)
`

X (1) X (2)

Indicator function Ix>0
pdf of X`
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2−γ ` θ 2−γ ` θ (r−1)/r0

dθ`e

δ`+η`

η `
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Adaptive Multilevel Monte Carlo: Analysis

Theorem
There is r̄ > 1 such that for 1 < r < r̄ :

The expected work of sampling IX`+η`>0 is W` ∝ 2γ`.

The variance is

Var[ IX`>0 − IX`+η`>0 ] ∝ 2−
q

q+1
1+θ
2 β`

for

θ =


1

2 q+1
q

γ
β
−1

β < q+1
q γ

1 β > q+1
q γ

.
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Adaptive Multilevel Monte Carlo: Complexity

Corollary
Computing E[ IX>0 ] to accuracy ε using (non-)adaptive Multilevel Monte
Carlo has cost:

Non-Adaptive: 
ε−2 β > q+1

q · 2γ
ε−2(log ε)2 β = q+1

q · 2γ

ε
−2−

(
γ− q

q+1β/2
)
/α

β < q+1
q · 2γ

Adaptive: 
ε−2 β > q+1

q · γ
ε−2(log ε)2 β = q+1

q · γ

ε
−2−

(
γ− q

q+1β(1+θ)/2
)
/α

β < q+1
q · γ
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Work/variance proof idea

Refining to X`+η`

` = 3, r = 1.99

2−γ ` θ 2−γ ` θ (r−1)/r

2γ`

2γ(1+θ)`

δ`+η`

2`
+
η
`
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Adaptive Multilevel Monte Carlo: Complexity

Example
When approximating the price of a digital option

E
[
IS(T )>K

]
,

using Euler-Maruyama approximation of S(T ), or the risk estimation
problem

E
[
IE[Y |R]>0

]
,

the assumptions hold for α = β = γ = 1 and any q <∞. The complexity
is (for any ν > 0)

O
(
ε−3) for Monte Carlo.

o
(
ε−2.5−ν) for non-adaptive Multilevel Monte Carlo.

o
(
ε−2−ν) for adaptive Multilevel Monte Carlo.
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Numerical Test: Digital Options

h` = 2−` adaptive r = 1.8 h` = 4−`
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`
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Numerical Test: Digital Options
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Numerical Test: Digital Options

h` = 2−` adaptive r = 1.8 h` = 4−`

Monte Carlo
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Other points in the paper

In https://arxiv.org/abs/2107.09148

Nested expectation: Differs from previous work in that the same
samples are used for computing the refinement, η` and for computing
the estimate X`+η` . Leads to reduced cost and more relaxed
assumptions.
Discussion on choices of σ` in nested expectation.
Motivation of previous assumptions in the case of nested expectation
and SDEs.
Analysis of weak error bounds and corresponding necessary
assumptions.
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Conclusion

Accurate computation of probabilities by standard Monte Carlo
techniques is expensive when the underlying observable must be
approximated for each sample.

Multilevel Monte Carlo is a great method to reduce this cost, but
suffers for probabilities due to the intrinsic discontinuity.

Adaptive sampling provides a general framework to improve Multilevel
Monte Carlo performance for probabilities, in many cases to optimal
O
(
ε−2) cost.

Other applications: Barrier options and computing sensitives.

See also special session: “Monte Carlo Methods for Discontinuous
Functions”, Wednesday 9am to 11am (UTC+2).
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Numerical Tests: Digital Options

For constant µ, σ, S(0) consider the asset

dS(t) = µS(t) dt + σS(t) dW (t).

Compute
E[ IX>0 ] := E[ IS(T )−K>0 ]

for some strike price K > 0. We use Euler-Maruyama with a step size
h` = 2−` to approximate Sh`(·) ≈ S(·) and set

X` := Sh`(T )− K .

The assumptions are satisfied using constant σ` ≡ 1 for α = β = γ = 1 and
any q <∞ giving complexity O

(
ε−2.5−ν) for standard Multilevel Monte

Carlo and O(ε−2−ν) for any ν > 0 using adaptive Multilevel Monte Carlo.
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Numerical Tests: Digital Options

Consider the assets

dS (i)(t) = µiS (i)(t) + σiS (i)(t)dW (i)(t)

where
W i (t) = ρW

(i)
com(t) +

√
1− ρ2W

(i)
ind(t)

for 1 ≤ i ≤ 10. Consider the digital option with payoff

I( 1
10
∑10

i=1 S
(i)(t))>K .

Thus, compute
E
[
I( 1

10
∑10

i=1 S
(i)(t))>K

]
.
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