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Outline

Stochastic heat equation:

o .
afl;—Au:f(uH—g(u)W, xeD, t>0
u=0, xe€dD, t>0
u(0) = wp.

Stochastic wave equation:
0?u .
W—Au=f(u)+g(u)w7 X€D7t>0
u=20, x€eoD, t>0
u(0) = wg, u(0) = uy.

W is spatial and temporal noise
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Outline

Stochastic Cahn—Hilliard equation (Cahn—Hilliard—Cook):

%—AV:W in Dx[0,T]
v=—Au+f(u) in Dx]0,T]
ou Ov

%—%—0 on 3D><[O7T]
u(0) = up in D
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Outline

| will emphasize:

>

vvyVvyVvyyvYyy

abstract framework (functional analysis)

the semigroup approach (mild formulation)
existence, uniqueness, and regularity of solutions
proof techniques

spatial finite element discretization

strong convergence of numerical approximations

weak convergence of numerical approximations
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Lecture 1. Stochastic evolution problem
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Outline

Formulate as an abstract evolution problem in Hilbert space H.:

dX + AX dt = F(X)dt + G(X)dW, t>0
X(0) = Xo

What does this mean? Strong formulation / variational formulation
(depending on how regular X is assumed to be):

X(t):Xo—&-/t(—AX—i-F(X))ds—&—/t G(X)dW

Weak formulation:
(X(2),1) = (Xor1) + / (X(s), —A"n) + (F(X(s)), ) ds

+ [ exenawes) e o)
0
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Outline

We will use the semigroup approach of Da Prato and Zabczyk [1] based
on the mild formulation:

X(t) =e Xy + / te*(f*S)AF(X(s))dH / te’(t’s)AG(X(s))dW(s)
0 0

Here {e’tA}tZO is the semigroup of bounded linear operators generated
by —A.

{W(t)}e>0 is @ Q-Wiener process in another Hilbert space U and

fot ---dW is a stochastic integral.

We often study the linear case, where F(X) =1, G(X) = B are
independent of X:

dX(t) + AX(t)dt = f(t)dt + BdW(t), t>0
X(0) = Xo

Here B € L(U,H). Often f = 0 for brevity.
Additive noise: BdW. Multiplicative noise: G(X)dW.
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Notation

» D C R spatial domain, bounded, convex, with polygonal boundary
» H = L[,(D) Lebesgue space

» H* = H*(D) Sobolev space, H} = {v € H' : v =0 0n 9D}

» 7, U real, separable Hilbert spaces

> L(U,H) bounded linear operators, L(H) = L(H,H)

|| Tull3
”THL U,H) = su
ueld HUHM

> Lo(U,H) Hilbert—-Schmidt operators, HS = Lo(H) = Lo(H, H)

\T||£2 U M) Z | Tejll3,,  with {ej}721 an arbitrary ON-basis in U

<S TEzMH Z SeJ,TeJ
j=1
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Notation

» D C R spatial domain, bounded, convex, with polygonal boundary
» H = L[,(D) Lebesgue space

» H* = H*(D) Sobolev space, H} = {v € H' : v =0 0n 9D}

» 7, U real, separable Hilbert spaces

> L(U,H) bounded linear operators, L(H) = L(H,H)

|| Tull#
I TNl 2e,2) = sup
ueld HUHM

> Lo(U,H) Hilbert—-Schmidt operators, HS = Lo(H) = Lo(H, H)

\T||£2 U M) Z | Tejll3,,  with {ej}721 an arbitrary ON-basis in U

<S TEzMH Z SeJ,TeJ
j=1

Note:

15T 2,20y < WSl Tl 2oz
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Semigroup

A family {E(t)}+>0 € L(H) is a semigroup of bounded linear operators
on H, if

» E(0) =1/, (identity operator)
> E(t+s)=E(t)E(s), t,s > 0. (semigroup property)

It is strongly continuous, or Cp, if

lim E(t)x =x Vxe€H.
t—0+

Then the generator of the semigroup is the linear operator G defined by

Gx = lim %, D(G) = {x € H : Gx exists}.

G is usually unbounded but densely defined and closed.
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Semigroup
u(t) = E(t)ug solves the initial-value problem
u'(t) = Gu(t), t>0; u(0)= u,
if up € D(G). Therefore, writing E(t) = '€ is justified.
There are M > 1, w € R, such that
|E(t)|l 2y < Me®",  t>0.

Without loss of generality we assume w = 0 (a shift of the operator

G — G — wl). Contraction semigroup if also M = 1.

If E(t) is invertible, E(t)~! = E(—t), then {E(t)}+cr is a group.

The semigroup is analytic (holomorphic), if E(t) extends to a complex

analytic function E(z) in a sector containing the positive real axis
Rez > 0. Then the derivative

E'(t)up = iE(t)uo = GE(t)up, t>0,

dt
exists for all ug € H, not just for ug € D(G). Moreover,
|E (B)ulln = | GE(Duollz < Ct Ml £>0. (1)

The inequality (1) is characteristic for analytic semigroups.
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Semigroup

On the other hand, we may start with a closed, densely defined, linear
operator A and ask for conditions under which G = —A generates a
semigroup E(t) = e~ *, so that u(t) = E(t)up solves

u'(t)+ Au(t) =0, t >0; u(0)= uo.

Such theorems exist, which characterize the generators of strongly
continuous (Cp) semigroups, analytic semigroups, and groups. For
example, Hille-Yosida theorem, Lumer-Phillips theorem, Stone's theorem.

For analytic semigroups a characterization is given in terms of the
resolvent bound

C

|z —wl’

[(z=A) " ea) < for Rez < w, (2)

with w as above (w = 0 without loss of generality).
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Semigroup

The non-homogeneous equation (strong solution)
U'(t) + Au(t) = f(t), t >0; u(0) = up.

is then solved by the variation of constants formula (Duhamel’s principle)
(mild solution):

u(t):E(t)Uo+/0 E(t —s)f(s)ds,

provided that f has some small amount of regularity. This is the basis for
our semigroup approach to SPDE.

Proof.
Multiply v'(s) + Au(s) = f(s) by the “integrating factor”
O(s) = E(t —s) = e (t=9)4 t > 5, and integrate. O
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Dirichlet Laplacian

Let D C R? be a bounded, convex, polygonal domain. Then
» finite element meshes can be exactly fitted to 0D;
» we have elliptic regularity: (—Av =fin D; v =0 on 9D)

Ivllreep) < CllAVILm) Vv e H(D) N Hy(D)

2 . . . . .
Here A = 27:1 % is the Laplacian. In this way we avoid some technical

J
difficulties associated with the finite element method in smooth domains.

Let H = Ly(D) and A = —A with D(A) = H*(D) N H3(D). Then A'is
unbounded in H and self-adjoint with compact inverse A=1. The spectral
theorem gives eigenvalues

O< M <A< <A<, N —oo, A\~ j9asj— o0

and a corresponding orthonormal (ON) basis of eigenvectors {(;}72;.
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Laplacian

Parseval's identity:

<

oo
VGH, V:ZAj@j» ‘?j:<v790j>H, HV”iI:
=1

-
Il
N

Fractional powers:

(o)
AV =AU, acR
j=1

o0
V2. = [A*2v|3 =Y A07, acR

j=1
HY ={veH:|v|g <oc}=DNA?), a>0

H=® = closure of H in the H %norm, «a >0

Then H=“ can be identified with the dual space (H*)*.
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Laplacian

The integer order spaces can be identified with standard Sobolev spaces.

Theorem .
(i) H = Hy(D) with [[v]lzn = IV Vi) = Ivilmep) Vv € H _
(i) H? = H*(D) N Hy (D) with ||v]| 2 = | AV]iyp) = [[V]ike(p) Vv € H?

Proof.

A proof of this can be found in Thomée [4, Ch. 3]. The proof of (i) is
based on the Poincaré inequality and the trace inequality. The proof of
(ii) uses also the elliptic regularity. In general, we have only

H?(D) N H}(D) C H?

because, in a nonconvex polygonal domain for example, H? = D(A) may
contain functions with corner singularities which are not in H?(D). O
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Laplacian

We define the heat semigroup:

It is analytic in the right half plane Rez > 0. Important bounds:

|E@)vln < vl >0, 3)
IDEE(E)Vn < Cet *|vln, >0, k>0,  (4)
INE(t)V][p < Cat™ V]|, t>0, a>0, (5)

t
/0 INV2E(s)vByds < YvIB. t>0. (6)

Recall from (1) that (4) is characteristic for analytic semigroups; and so
is (5). They mean that the operator E(t) has a smoothing effect. The
smoothing effect in (6) is true for the heat semigroup, but not for
analytic semigroups in general.
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Laplacian

Proof.
We use Parseval and x®e=* < C, for x > 0:
o0 5 o0
INE()vIE = (AFe ™) = t72* > (M\t)* e 2007
Jj=1 j=1
< C Y 0= C2e vl

Jj=1

This proves (3) and (5). Similarly, for (6),

/H/\WE( Wvl3 ds—/ Z/\ e 22 ds
—Z/ Ne 2V ds 7 < 3,
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Laplacian

Remark. The above development based on the spectral representation of
fractional powers and the heat semigroup carries over verbatim to more
general self-adjoint elliptic operators:

Av ==V -(a(x)Vv) + c(x)v with 0 < a9 < a(x) < a1, ¢(x) >0,

for then we still have an ON basis of eigenvectors. For non-self-adjoint
elliptic operators, the fractional powers and the semigroup may be
constructed by means of an operator calculus based complex contour
integration using the resolvent, see (2). The bounds (3) and (5) are part
of the general theory and (6) can be proved by an energy argument if the
operator satisfies the conditions of the Lax-Milgram lemma, for example,

Av = =V - (a(x)VVv) + b(x) - Vv + c(x)v  with c(x) — 3V - b(x) > 0,
so that
(A, v)n > clviZ,.

See the following exercises.
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Laplacian

Exercise 1. Prove (6) by the energy method: multiply
u(t)+Au(t)=0 (M)

by u(t) and integrate.

Exercise 2. Prove the special case a = % of (5) by the energy method:

multiply (7) by tu'(t) and integrate.

19/76



Random variable

Let U be a separable real Hilbert space and let (2, F, P) be a probability
space. A random variable is a measurable mapping f: Q — U, i.e.,

f~1(A) € F VA€ B(U) (= the Borel sigma algebra in U).

We define Lebesgue—Bochner spaces L,(Q2,U):

Iflloen = ([ 1F@IEdPw) " = ElIrIE)
and the expected value
E[f]:/fdP, feLi(QU).
Q

Filtration: {F;}+>0 C F increasing family of sigma algebras, F; C F; if
t <s.

Stochastic process: f = {f(t)}+>0 such that each f(t) is a random
variable. It is adapted if f(t) is F¢-measurable.

Note: f(w,t), we write f(t) = f; = f(-, t).
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Brownian motion

Probability space (2, F, P).
Brownian motion: Real-valued stochastic process § = (5(t))¢>0 such
that

> 5(0) = 0.
> continuous paths t — S(t) for almost every w € Q.

» independent increments: ((t) — 3(s) is independent of 5(r) for
0<r<s<t

> Gaussian law: P o (B(t) — B(s)) ' ~N(0,t —s), s<t.In
particular, E(3(t) — B(s)) =0, E(3(t) — B(s))*> =t — s.
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Brownian motion

Probability space (2, F, P).
Brownian motion: Real-valued stochastic process § = (5(t))¢>0 such
that

> 5(0) =0.

> continuous paths t — S(t) for almost every w € Q.

» independent increments: ((t) — 3(s) is independent of 5(r) for
0<r<s<t

> Gaussian law: P o (B(t) — B(s)) ' ~N(0,t —s), s<t.In
particular, E(3(t) — B(s)) =0, E(3(t) — B(s))*> =t — s.

It is a non-trivial fact that Brownian motion exists.
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Brownian motion

Probability space (2, F, P).
Brownian motion: Real-valued stochastic process 8 = (5(t)):>0 such
that

> 5(0) =0.

» continuous paths t — [(t) for almost every w € Q.

» independent increments: ((t) — 3(s) is independent of 3(r) for
0<r<s<t.

> Gaussian law: P o (8(t) — B(s)) ™t ~N(0,t —s), s<t. In
particular, E(3(t) — B(s)) = 0, E(3(t) — B(s))> =t — s.
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Brownian motion

Probability space (2, F, P).
Brownian motion: Real-valued stochastic process 8 = (5(t)):>0 such
that

> 5(0) =0.

» continuous paths t — [(t) for almost every w € Q.

» independent increments: ((t) — 3(s) is independent of 3(r) for
0<r<s<t.

> Gaussian law: P o (8(t) — B(s)) ™t ~N(0,t —s), s<t. In
particular, E(3(t) — B(s)) = 0, E(3(t) — B(s))> =t — s.

It is continuous, but nowhere differentiable. Nevertheless, the It5 integral

= / (£) dB(1)

can be defined, if the stochastic process f satisfies certain assumptions,
some more details later...
It is a random variable: /(w fo t))(w). It is not path-wise

defined: /(w ;éfo (t,w d/a’(t w).
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Stochastic ODE

dX(t) = p(X(t), t)dt + o(X(t),t)dB(t), te]0,T]
X(0) = Xo.

This means

X(t)=Xo+ /Otu(X(s),s)ds+ /Ota(X(s),s)dB(s)7 telo, Tl
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Stochastic ODE

dX(t) = p(X(t), t)dt + o(X(t),t)dB(t), te]0,T]
X(0) = Xo.

This means

X(t‘):X(ﬁ-/0 u(X(s),s)ds—k/O o(X(s),s)dB(s), te]0,T].

Could be a system:
dX = pi(Xe, . Xny ) dE+ > 0(Xa, .o X 1) dBi(E), i=1,....n,
j=1

X=(X,...,X,)" €R", pu:R"x[0,T] = R", o:R"%[0, T] — R™™,

and B = (B1,...,Bm)" an m-dimensional Brownian motion, consisting of
m independent Brownian motions ;.
Drift u, diffusion o.
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Covariance
If o is a constant matrix:

dX(t) = u(X(t),t)dt + o dB(t)

The covariance of the noise term is:
(with increments AB = B(t + At) — B(t))

E[(cAB) ® (¢AB)] = E[(cAB)(cAB)T]
=E[cABAB o]

cE[ABAB']o"

=o(Atl)o" = Atoo” = AtQ

Covariance matrix: Q = oo’

(nxm)yx(mxn)=nxn
It is symmetric positive semidefinite.

So {oB(t)}+>0 is a vector-valued Wiener process with covariance matrix

Q=o0".
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Covariance
If o is a constant matrix:

dX(t) = u(X(t),t)dt + o dB(t)

The covariance of the noise term is:
(with increments AB = B(t + At) — B(t))

E[(cAB) ® (¢AB)] = E[(cAB)(cAB)T]
=E[cABAB o]

cE[ABAB']o"

=o(Atl)o" = Atoo” = AtQ

Covariance matrix: Q = oo’ (nxm)yx(mxn)=nxn
It is symmetric positive semidefinite.

So {oB(t)}+>0 is a vector-valued Wiener process with covariance matrix
Q=o0".

Conversely, given @ we may take ¢ = Q*/2 and use Q'/2dB(t).

We want to do this in Hilbert space.
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Q-Wiener process

We start with a covariance operator Q € L(U), self-adjoint, positive
semidefinite. We assume that it has an eigenbasis:

Qe = e, 7 >0, {e};2; ON basis in U.

Let 3;(t) be independent identically distributed, real-valued, Brownian
motions. Define

W(t) =" ~28(1)e.
j=1
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Q-Wiener process

We start with a covariance operator Q € L(U), self-adjoint, positive
semidefinite. We assume that it has an eigenbasis:

Qe = e, 7 >0, {e};2; ON basis in U.

Let 3;(t) be independent identically distributed, real-valued, Brownian
motions. Define

= 1/2
=" 7%8i(t)e;.
j=1

Two important cases:
> Tr(Q) < 00. Then W(t ) converges in L(Q, Z/{)

EHZ 1/2 H Z’yj BJ fthnytTr
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Q-Wiener process

We start with a covariance operator Q € L(U), self-adjoint, positive
semidefinite. We assume that it has an eigenbasis:

Qe = e, 7 >0, {e};2; ON basis in U.

Let 3;(t) be independent identically distributed, real-valued, Brownian
motions. Define

= 1/2
=" 7%8i(t)e;.
j=1

Two important cases:
> Tr(Q) < 00. Then W(t ) converges in L(Q, Z/{)

EHZ 1/2 H Z’yj BJ fthnytTr

> Q =1/, “white noise”. Then W(t) is not L{—valued, since
Tr(/) = oo, but converges in a weaker sense; i.e., in a larger space
U .

25/76



Q-Wiener process

If Tr(Q) < oc:
> W(0)=0.
> continuous paths t — W(t) in U.

» independent increments: W(t) — W(s) is independent of W(r) for
0<r<<s<t
> Gaussian law: P o (W(t) — W(s))™' ~ N(0,(t —5)Q), s<t

26/76



Q-Wiener process

Proof.
(Covariance.)  Let AW = W(t) — W(s). Then

<E[AW®AW}U v> = [(AW Wy (AW, vy ]

7E[<ZV}/ Apjej, u > <ka/ ABex, > }

=3 P PE[BBAB (e, uulen Viu
j=1 k=1

Z(t—S)Z’YKejv Julej, viu = (t —s)(Qu,v)

because, by independence,

E[Aﬁf] =(t—

_ (t—s),
E[AﬂjAﬁk]{E[Aﬁj} (A8 =0, j#k
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Q-Wiener process
Why Hilbert-Schmidt? Let B € L£(U,H) and calculate the norm

1B(W(t) = W())E ) = E[IIBAWIS,]

—E[(3 120080 301 B0Be). |

j=1 k=1
S V2 [AG AR (Be. Badw = (£ — ) S Bel2
j=1 k=1 =
1/2
(t-s) ZHB Pl = (t =) 3 180",

j=1
— (t- 5)||BQl/2||Lz(u,H) = (t = 9Bl 200,
Here we used the Hilbert-Schmidt norm of a linear operator T: U — H:
T2 w0 =D I Teill3,  arbitrary ON-basis {¢;}72, in U.
j=1

Also, it is useful to introduce || T zoqs ) = ||TQl/2H£2(Z,,7fH).
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Wiener integral

We want to define

T

O(t)dW(t), where & € Ly([0, T], LY(U,H)) is a

deterministic integrand. The construction goes in three steps.

1. Simple functions.

0= th < -+ < tj < v

Define

[ o

N—-1
<ty=T, =) Ol .., b€ LIUH).
j=0
N—1
CD.I J+1 (tj))
j=0
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Wiener integral

2. 1t6 isometry for simple functions. Using the independence of
increments and the previous norm calculation:

I e, [HD () - W)
- e[ s (W) - W) ]
N—1

.
= Y 19yt =) = [ 1900
j=0

So we have an isometry for simple functions:
T
$ |—>/ ddW,
0
L2([07 T]a ‘Cg(ua H)) — LQ(Qv H)

3. Extend to all of Ly([0, T], £L3(U,H)) by density.

30/76



It6 integral

For a random integrand the It6 integral fOTCDdW can be defined
together with the isometry

e[| " scramcal] =€ [ 190

-
H/ O dW
0

Here the process ®: [0, T] — £3(U,H) must be predictable and adapted
to the filtration {F;}+>0 generated by W and

or

L2(2,H)

[Pl Lxo, 71,29w,1))

.
1918 ety ety = E | 190020 e] < .

Recall || Bl zou,70) = 1BQY? || cou1y-
No details here...
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Stochastic evolution equation

dX + AXdt = F(X)dt+ G(X)dW, t>0; X(0)=Xp

It is now possible to study the mild form of the above stochastic
evolution equation:

X(0) = B+ [ Bt~ )F(X()ds
0
+/tE(t—s)G(X(5))dW(5), £>0
0

where E(t) = e ™ is a Cy-semigroup, see Da Prato and Zabczyk [1].

But here we specialize to the heat and wave equations.
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Linear stochastic heat equation

Qe 0) - dule.t) = W(E D),  E€DCRY t>0

u(,t) =0, £E€edD, t>0
U(f,O) = U, f €D

dX + AXdt = BdW, t>0
{X(O) = Xp

H=U=H=LyD), |||, {-,-), D C RY, bounded domain
A=A=—A, D(A) = H¥D) N HY(D), B = I

probability space (2, F, P)

W(t), Q-Wiener process on U = H

X(t), H-valued stochastic process

vvyyVyvy

> E(t) = e *M, analytic semigroup generated by —A

Mild solution (stochastic convolution):
t
X(t) = E(t)Xo +/ E(t—s)dW(s), t>0
0
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Regularity
i 1/2 .
IVllgs = IN/2v] = (SN voe)?) ) A7 = D(N?), geR
Jj=1

Mean square norm: ||V||i2(Q,HB) = E(||v||f-1ﬂ)7 BeR

Hilbert=Schmidt norm: || T||us = || T z,(H,H)
Theorem. If ||/\(5*1)/2||L8(H) = [[AF=D/2Q12||ys < oo for some B > 0,
then [ X(6) | y.0) < € (IXolliy(gny + 1A~/ Q2 s )
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Regularity

i 1/2 .
IVllge = IN2v] = (3N (v, ¢)?) . HT=D(A?), BeR
Jj=1

Mean square norm: ||v||L2 Q.h8) = E(||v||f-1ﬂ)7 B ER
Hilbert=Schmidt norm: || T||us = || T z,(H,H)
Theorem. If [AC=D/2|| g, = [[AP=D/2QL/2|| s < oo for some 3> 0,
then [ X(6) | y.0) < € (IXolliy(gny + 1A~/ Q2 s )
Two interesting cases:
> I |QY2|Rs = X275 Q262 = 32721 75 = Tr(Q) < oo, then

B=1.
> IfQ=1/,d=1 A=— 852, then [|[AB=1/2||4s < oo for 3 < 1/2.

This is because A\j ~ 2/d 5o that
IAB-D/2|2g = 52 A0~ ) A YT < oo iffd =1,
g<1/2
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Proof with X; =0

(Isometry, arbitrary ON-basis {¢;})
2
IXC)IZ g0y = E(| / NPE(E— sy aw(s)|)
= / IN*/2E(5) Q2 s ds
t
= | INEEN2Q 2 g as

0ot
=3 [ INEN QM0 o
k=10

o0
<C Z ||/\(ﬁ*1)/2 Q1/2¢k||2

k=1

t
— CAG-D2QU|3 / INV2E(s)v[2ds < 3[[v|]
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Regularity

We used smoothing of order 1 in the form (6):

t
/O IN2E(s)v|2ds < Y[v2,

which holds for the heat semigroup.
For an analytic semigroup in general we have only (5):

[AE(t)v]| < Cat™*lv],
which leads to

B+

0ot
X zz/o A5 BN Q24 2 ds
k=1

t i o te s
= Ce/o s ds DIV QY2 = G QY.
k=1

An e-loss!
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Temporal regularity for the stochastic heat equation

t
Take Xp = 0 so that (stochastic convolution) X(t) = / E(t—s)dW(s).
0

Theorem
If [|ANB=D/2Q1/2||ys < oo for some 3 € [0, 1], then

1X(£) = X(8) |y < Clt — 5|7 [AC=D/2Q12| s

Proof. Take t > s and compute
X(0) - x(s) = [ Ee-naw() - [ Els-new)
= [ (&= 0~ B = ) awtn
+ [ EC-new)
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Temporal regularity

The two terms are independent random variables with zero mean and
therefore, using also It6's isometry,

E(IX(£) — X(s)IP) = E( H/ (t—s)— )E(s — r)dW(r H)
+E(
/ I(E(t = 5) — NE(Q2|f4s dr

t—
+ [ IEO@ s ar
0

E(t— r)dW( r)H )

For the first term we use

IE() = vl < CelIAv]), £>0, a€[0,1]
= I(E()) ~ DAV]| < Cev]
= ICE()) — DA gy < CE°
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Temporal regularity
With a = /2, 8 €[0,2] and using (6) as in the spatial regularity proof:

LA I(E(t — 5) — DE(r)Q2|3 dr
Su/\KEU>fﬂ—fDA’gAgEU)Q”ﬂﬁsdr
0
_B8 s -1
< I(E(t—s) — I)A zuaHxA INLE(ONE QY2 3 dr

B-1
< C(t—s)PINT Q2.

For the second term we use a refined version of (6), see [2, Lemma 3.9]:
t
/ NS E(s)vIPds < CE@v]2, a < [o,1],
0
witha=1-0, g €]0,1]:
t—s
| 1@ s

s 1s 8- 8-
= [N EONT Qs dr < (e = 5 INE @V g
0
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The linear stochastic wave equation
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The linear stochastic wave equation
0%u . d
ﬁ(f7 t)_Au(£7 t): W(£7 t)7 §€DQ R ’ t>0

u(é,t) =0, £€dD, t>0

U(f,O) = Uo, %(5,0) = ui, 5 €D
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The linear stochastic wave equation

0%u . d
@(&t)—AU(E,tFW(&tL E€EDCRY t>0
u(é,t) =0, £€dD, t>0

oe0) = w, eE0)=um,  EeD

A=—A, D(N) = H?= H*D)n H(D)
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The linear stochastic wave equation

%u : d
(&t —AuE ) =W(t), (eDCRY t>0
u(€ ) =0, {€dD, t>0
oe0) = w, eE0)=um,  EeD

A=—A, D(N) = H?= H*D)n H(D)

. © 1/2
FP = DIN), Vllgs = IN2v] = (3N (v.ei)?) . AER
j=1
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The linear stochastic wave equation

%u : d
(&t —AuE ) =W(t), (eDCRY t>0
u(€ ) =0, {€dD, t>0
oe0) = w, eE0)=um,  EeD

A=—A, D(N) = H?= H*D)n H(D)

. © 1/2
FP = DIN), Vllgs = IN2v] = (3N (v.ei)?) . AER
j=1

oo 8o o] o= [ o
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The linear stochastic wave equation

%u : d
(&t —AuE ) =W(t), (eDCRY t>0
u(€ ) =0, {€dD, t>0
oe0) = w, eE0)=um,  EeD

A=—A, D(N) = H?= H*D)n H(D)

. © 1/2
FP = DIN), Vllgs = IN2v] = (3N (v.ei)?) . AER

oo+ (8 0] ] ae= [T o
X = [L‘I’t] A= [R _0/}, B = m U=H = L,(D)

H=H=H'x H™', H’=HxH"' DA =H
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Abstract framework

dX(t) + AX(t)dt = BdW(t), t>0
X(0) = Xo
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Abstract framework

X(0) = Xo

> {X(t)}r>0, H = H° x H™!-valued stochastic process

{dX(t) + AX(t)dt = BdW(t), t>0
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Abstract framework

X(0) = Xo
> {X(t)}r>0, H = H° x H™!-valued stochastic process
> {(W(t)}+>0, U = HO%valued Q-Wiener process w.r.t. {F;}i>0

{dX(t) + AX(t)dt = BdW(t), t>0
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> {X(t)}r>0, H = H° x H™!-valued stochastic process
> {(W(t)}+>0, U = HO%valued Q-Wiener process w.r.t. {F;}i>0

{dX(t) + AX(t)dt = BdW(t), t>0

cos(tA/?) A=1/2sin(tAY/?)
—AY/2 sin(tA/2) cos(tA1/?)
Co-semigroup on H but not analytic (actually a group)

> E(t)=e "=
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Abstract framework

X(0) = Xo
> {X(t)}r>0, H = H° x H™!-valued stochastic process
> {(W(t)}+>0, U = HO%valued Q-Wiener process w.r.t. {F;}i>0

{dX(t) + AX(t)dt = BdW(t), t>0

cos(tA/?) A=1/2sin(tAY/?)
—AY/2 sin(tA/2) cos(tA1/?)
Co-semigroup on H but not analytic (actually a group)

> E(t)=e "= [

Here

cos(tAY?)y = Zcos tANV, 0y, (Aj, @)) are eigenpairs of A
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Regularity

42/76



Regularity

Theorem. (With X(0) = 0 for simplicity.) If |AB=1/2Q%/2||s < oo for
some B > 0, then there exists a unique mild solution

t

¢ t/\_l/zsin t —s)AY2) dW(s
X(t):[Xl(t)]—/ E(t—s)BdW(s) = /0 (=25 aWee
0 cos ((t — s)AY2) dW(s)

0

and

IX(8)l|p0,my < LINPTD2QV2 s, HP = HP x HP7!
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Regularity

Theorem. (With X(0) = 0 for simplicity.) If |AB=1/2Q%/2||s < oo for
some B > 0, then there exists a unique mild solution

_ "cos ((t = s)NY?) dW(s)
0

xt)= [ed] = [ Ee-agawis) - ) Esin (= o) aw)

and

IX(D)l| @iy < EINED2QV2 s, HP = FP x HA

Two cases:
> If HQI/2||E|S = Tr(Q) < oo, then 5 =1.
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Regularity

Theorem. (With X(0) = 0 for simplicity.) If |AB=1/2Q%/2||s < oo for
some B > 0, then there exists a unique mild solution

. t cos ((t — 5)/\1/2) dW(s)
0

xt)= [ed] = [ Ee-agawis) - ) Esin (= o) aw)

and
IX()ll Ly < LINPD2QV2 s, HE = HP x HPT!
Two cases:

> If |QY?|]2s = Tr(Q) < oo, then 8 = 1.
> If Q =1, then [AP-D/2||ys < 0 iff d = 1, < 1/2.

42/76



Proof for X;

Isometry:
t 2
X ()2 ) = H/ NPA2sin (2 - s)N2) aw ()| )

/ A1) %sin ( s/\l/z)Ql/2||2 ds
:/0 [|sin (s/\1/2)/\(ﬁ71)/2Q1/2||2H5ds

t
< [ i (512 [y s 1A 2012
0

< t|APU2QY2 R
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An alternative condition

Note: we do not assume that A and Q commute, i.e., we do not assume
that they have a common eigenbasis. However, then it may be difficult to
verify the condition |[AP=1/2Q/2| s < oc.

The following theorem gives alternative conditions that imply this.

Theorem

Assume that Q € L(H) is selfadjoint, positive semidefinite and that N is
a densely defined, unbounded, selfadjoint, positive definite, linear
operator on H with an orthonormal basis of eigenvectors. Then the
following inequalities hold, for s € R, a > 0,

s 1 _
N2 Q2 [3s < N Qlme < A+ Ql| i 1A [17v, (8)
A2 QF|2g < [IAF2 QA2 ||, (9)

provided that the respective norms are finite. Furthermore, if N and Q
have a common basis of eigenvectors, in particular, if Q = I, then

1A% Q1 Rs = IA*Qllr = A7 @A~ . (10)

This is Theorem 2.1 in [4].
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An alternative condition

Here | Tt = I Tllzyny = 2224 0) is the trace norm defined in terms of
the singular values o; of the trace class operator T, i.e., o; are the
non-negative square roots of the eigenvalues of TT*. We have

| Tll7v = Tr(T) if T is self-adjoint positive semidefinite.

Therefore, using (8):
INT Q¥ [[Es <IN Q| qry 1A=,

we select o > 0 such that Tr(A=%) = 7%, A7 < oo, which is possible.
Then it suffices to verify that [[A?~2F Q| £ () < oc.

(Schatten classes: L,(H), || Tz, = (372, 07) /P, 1 < p < o0.)
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An alternative condition

Here | Tt = I Tllzyny = 2224 0) is the trace norm defined in terms of
the singular values o; of the trace class operator T, i.e., o; are the
non-negative square roots of the eigenvalues of TT*. We have

| Tll7v = Tr(T) if T is self-adjoint positive semidefinite.

Therefore, using (8):
INT Q¥ [[Es <IN Q| qry 1A=,

we select o > 0 such that Tr(A=%) = 7%, A7 < oo, which is possible.

Then it suffices to verify that [[A?~2F Q| £ () < oc.
(Schatten classes: L,(H), || Tz, = (372, 07) /P, 1 < p < o0.)

Now: proceed to finite elements!
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Lecture 2. Strong convergence of finite element
approximations
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Recall the linear stochastic heat equation

Qe 0) - dule.t) = W(E D),  E€DCRY t>0

u(,t) =0, £E€edD, t>0
U(f,O) = U, f €D

dX + AXdt =dW, t>0
(o2
H=U=H=LyD), |||, {-,-), D C RY, bounded domain
A=A=—A, D(A) = H¥D) N HY(D), B = I

probability space (2, F, P)

W(t), Q-Wiener process on U = H

X(t), H-valued stochastic process

vvyyVyvy

> E(t) = e *M, analytic semigroup generated by —A

Mild solution (stochastic convolution):
t
X(t) = E(t)Xo +/ E(t—s)dW(s), t>0
0
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Regularity
e 1/2 .
vl = IN2v) = (SN v.e)?) 7= D), seR
Jj=1

Mean square norm: ||v||2 (QH8) = (||v|| 5, BER
Hilbert—=Schmidt norm: || T{lus = || T z,(H,H)

Theorem. If |[AB~1/2Q1/2||s < oo for some B > 0, then
X Ly, 8y < C(||X0||L2(Q,/-'/ﬂ) + ||/\('871)/2Ql/2||HS>

Two cases:
> I |QY2|IRs = 272, 1@ %6]? = X272, 75 = Tr(Q) < oo, then
5 =1.

> IfQ=1,d=1, A=—2; then [|[AP~D/2||ys < oo for f < 1/2.

521
H/\(B_l)/2||2 ZJ —- B)NE jTA=PR2/d < o iff d =1,
8<1/2
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The finite element method

triangulations {7, }o<h<1, mesh size h

finite element spaces {Sk}o<h<1, Sh C HY(D) = H!

S), continuous piecewise linear functions

Xn(t) € Sp; (dXp, x) + (VXh, Vx) dt = (dW, x) Vx € Sp, t >0
An: Sp — Sp, discrete Laplacian, (Api, x) = (VY,Vx) Vb, x € Sp
An=NMA,

Pp: Ly — Sp, orthogonal projection, (Ppf,x) = (f,x) VX € Sh

vVvyVvyvVvYyvYyyvyy

Xh(t) c Sh, Xh(O) = Pp Xy
dX, + ApXpdt = PpdW, t>0

PaW(t) is a Qs-Wiener process with Qn, = PrQPy,.

Mild solution, with Ex(t)v, = e "y, = ZJN:"l e (v, on i) Pn
t
Xn(t) = En(£)PhXo +/ En(t — 5)PpdW/(s)
0
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Error analysis for elliptic problems
ueH;: (Vu,Vo)=I(f,¢) YopecHy orAu=f

up € Sh : <VU;,,VX> = <f7X> VX S 5/, or Npup = th
Then up = Rpu, where Ry, is the Ritz projector:

Rh H(:Jl — Sh
(VRhu,Vx) = (Vu,Vx) Vx €S,

Error estimate (using elliptic regularity, Aubin-Nitsche duality argument):
|Rhu — u]| < CR?|ullpe Yu € H* N H}

But H? = H? N H} with equivalent norms, so that

|Rhu — ul| < CR?||ull  Vu € H?

But [[ullye = [IAul| = [[£]], so that

A PLf — AL < CR? VfeH

or
IS Po = A"l 2y < CH?
Also:  ||Ppv —v|| < CH| v Vv € H?
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Approximation of the semigroup

{ut—&—/\u:O, t>0 {uh,t+/\,,uh:0, t>0

u(0)=v up(0) = Ppv
U(t) = E(t)V uh(t) = Eh(t)PhV
Denote

Fa(t)v = En(t)Ppv — E(t)v, |Iv]s = [IN*/?v].
We have, for 0 < 5 < 2,
> || Fa(t)v]| < Ch|lvllg, t=0

t 1/2
> ([ IRsIPds) < b vl £20
0

> ||Fa(t)v]l < ChPeP2|v]l, t>0
First prove for 8 =2 and g = 0, then interpolate. This can be found in
Thomée [4, Chapters 1, 3]. Note: 3 = 2 is the maximal order for
piecewise linear finite elements.
(FEM of order r > 2 are piecewise poly of degree r —1 > 1.)
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Proof the second error estimate

We prove the error estimate for 5 =2 and 8 = 0, we then interpolate to
B €10,2].

t 1/2
For 8 = 2 we must prove (/ ||Fh(s)v||2ds) < Ch?||vs.
0
Recall Fp(t)v = Ex(t)Prv — E(t)v = up(t) — u(t), where

(ug, @) + (Vu, V) =0 V¢ € Hy(D); u(0)=v
(Un,t, n) + (Vun, Vo) =0 Vou € Sp; up(0) = Phv

Take ¢ = ¢, and subtract (with e = uj, — u):
<et,¢5h> + <V6,V¢h> =0 Vo, € Sh
Write e = (up — Ppu) + (Phu — u) = 60 + p. Then 0(0) =0 and

(O, &) +(VO,Von) = —(pt, &n) — (Vp, Vo) = —(Vp,Vén) Von € Sp
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Proof

We have

(0, 0n) + (VO,Vop) = —(Vp, V) Von€Sp  6(0) =0.
Take ¢n = A, 10:

(0, N10) + (VO, VA1) = —(Vp, VA 10)

d .
2371 2012+ 1617 = —(p,0) < IollI61l < 3ol + 3161

t t
[ 16 ds < [ ol as
0 0

Finally, by e = 6 + p and smoothing of order 1, see (6),

t t t
[ lepas <2 [ olpas < cnt [ ulas < it
0 0 0

53/76



Proof

For 8 = 0, smoothing of order 1, see (6), holds analogously for Ej:
t
/ NG En(s)vall® ds < 31wl
0
Then
t t t
/ | Fa(s)v|*ds < 2/ | Ex(s)Pyv|*ds + 2/ |E(s)v||*>ds
0 0 0
t
:2/ IAL2E, ()N, 2 Pyv | ds
0

t
+ 2/ |AY2E(s)N"Y2v|? ds
0
<IN, 2Py 2+ A0 )12 < 2f|v]|,

Proof of [|A, />Pyv|| < [A"Y2v|| = |[v||_1 on the next page.

54/76



Proof

Proof of [|A, /2Py < A2V = v -1
- -
NP = sup e Prvovn)l 1V Ay Pvi)l
h hESh [l vall wes, vl
BN A T CA)
weS [[A2wy||  weess lIwally
_1
B (O N (A L)
" wern lwlh heH [l ]l
A=2v, h .
— sup VAt =y,
ned Al
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Strong convergence

Theorem
If |ANP=D/2Q1/2||ys < oo for some 3 € [0,2], then

[1Xn(t) = X ()l (e,m) < ChB(HXoHLZ(Q,HB) + ||/\(671)/2Q1/2||Hs>~

Optimal result: the order of regularity equals the order of convergence.
Two cases:

> If |QY/2||2s = Tr(Q) < oo, then the convergence rate is O(h).

> IfQ=1d=1 A= —6‘9—;, then the rate is almost O(h*/2).
No result for Q =1, d > 2.
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Strong convergence: proof

X(t) = E(t)Xo + /Ot E(t — s)dW(s)

Xp(t) = En(t)PrXo + /Ot En(t — s) Py dW(s)

Fa(t) = En(t)Pn — E(t)

Xn(t) — X(t) = Fn(t)Xo + /Ot Fa(t —s)dW(s) = e(t) + ex(t)

IFa(t)Xoll < Ch%[[Xoll5

= lew® e < Ch Xl L)
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Strong convergence: proof

EH /Ot B(S)dW(S)H2 _ E/Of 1B(s)QY?||%s ds (isometry)

t 1/2
(/ IFa(s)vI2ds) " < Ch|[v]jg-a, with v = QY2
0
=

t 2 t
et = E[| [ A=) awto)| = [ 1At - )02 s ds
00 t 00
=3 [ A= 9@ 20 s < €3 R1Q A
=1 =1

= CP7 Y NPTV = ChP NP2 QM s
=1
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Another type of estimate
Take Xo = 0 so that X(£) = Wx(t) :/ E(t — 5)dW/(s).
0

We have shown

1/2
((sup E[IWAMIB]) " < CINT Qs
te[0,T]

1/2 B-1
(sup E[Ina, () = Wa(®)I?]) < CHINE QY2 lus
te[0,T]

Theorem
Let e € (0,1] and p > 2/e. Then

(€[ s Ima(0lg]) " < ClInE @2l

1/
(€[ sup 1w, (e) - wa(0lP])”” < G744 @12 g
tel0,T]

50/76



Another type of estimate; proof

We present the idea of the regularity estimate. The proof is an
adaptation of the 'factorization method’ in the proof of [1, Theorem 5.9,
Remark 5.11]:  (E(t — s) # E(t)E(—s))

Wa(t) = /Ot E(t — o) dW(0)

= Ca/ E(t—U)/l (t—s) 17%(s — o) *dsdW(o)
0 Jo

:ca/ (t—s)fHQE(tfs)/ (s—0) “E(s—0o)dW(o)ds
0 0

c /Ot(t—s)_H“E(t—s)Y(s)ds
Y(s) = /0 (s — o) E(s — o) dW(o)

™

t
= / (t—s) (s —0) *ds =

sin(ra)
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Another type of estimate; proof

Idea of the proof:
Y(s) = /0 (5= o) E(s — o) dW(0)
Wi(t) = ca /Ot(t —s) ME(t — s)Y(s)ds
Holder:

]
s lta ;
NP < cal [ (s g 0s)” [T Invisyieas

and, hence,

e[ s [nEwa(lP] < | Sl as)’

te[0,T]
!
x /0 E[IA% Y(s)[] ds
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Time discretization

dX + AXdt=dW, t>0
X(0) = Xo

The implicit Euler method:
k = At, t, = nk, AW" = W(t,) — W(tn,_1)

XP €Sy, X =PpXo
X — X1+ kARX] = PhAW™,

X = Ein X7+ EnPhAW",  Eip = (I + kAy) ™

Xp = E[,PhXo+ > Eg /T Py AW
j=1

X(t2) = E(ts)Xo + /t" E(t, — s)dW(s)
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Approximation of the semigroup

Denote F, = E;}, Py — E(tn)

We have the following estimates for 0 < 8 < 2:
> |[Favll < C(K°% + h7)|Iv]

n 1/2
> (kzluﬁ-vuz) < CORP2 4 1) |vi|s
j:

See Thomée [4].
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Strong convergence

Theorem
If ||/\(B*1)/2 QL/2

e" = X! — X(t,),

el < CP2 4 1) ([ Xoll iy ) + 1A/ Q2 s )

|us < oo for some (B € [0,2], then, with

The reason why we can have k' (when 3 = 2) is that the
Euler-Maruyama method is exact in the stochastic integral for additive
noise. For multiplicative noise we get at most k!/2.

J. Printems [3] (only time-discretization)

Y. Yan [1, 2]
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Recall the linear stochastic wave equation

0%u . d
@(f,t)—AU(E,tFW(&tL E€EDCRY t>0
u(é,t) =0, £€dD, t>0

oe0) = w, eE0)=m,  EeD
N=—A, D(N) =H*=H*D)n Hy(D)

. i 1/2
H? = DIN2), lvlls = [N = (oM (v.g)?) . BeR

au + (8 0] ] ar=[7] aw
X = [L‘I’t] A= [R _0/}, B = m U=H = L,(D)

HP=HP x HP7Y, H=H"=H’x H™', D(A)=#!
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Abstract framework

dX(t) + AX(t)dt = BdW(t), t>0
X(0) =
> {X(t)}r>0, H = H° x H '-valued stochastic process
> {(W(t)}+>0, U = HO%valued Q-Wiener process w.r.t. {F;}i>0

1/2 A=1/2 sin(¢AY/2)
> _ A _ cos(tAl/?) sin
E(t)=e [ A2 sin(tAY/?) cos(tAY/?) |’
Co-semigroup on H (actually a group) but not analytic

Here

cos(tAY?)y = Zcos t\A) (v, )i, (A, @) are eigenpairs of A
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Regularity

Theorem. (With X(0) = 0 for simplicity.) If |[A(?=1/2Q%/2||ys < oo for
some 3 > 0, then there exists a unique mild solution

t /t A2 sin ((t — s)AY2) dW(s)
X(t) = [Xg(t)] :/O E(t—s)BdW(s) = |70 .

0

cos ((t — s)AY2) dW(s)

and

IX(D) @) < COIAETD2QVP s, #HP = HP x HO7L.
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Spatial discretization

vvyYVvyvVyy

triangulations {7, }o<h<1, mesh size h

finite element spaces {Sp}o<h<1

Sp C H' = H}(D) continuous piecewise polynomials of degree < 1

An: Sp — Sp, discrete Laplacian, (Ap), x) = (Vi), Vx), Vx € S
Py: H® — Sy, orthogonal projection, (Paf,x) ={f,x), Vx € S

o -1 o
wel o] el
{dXh(t) + ApXp(t)dt = By dW(t), t>0

Xn(0) = Xo,n

cos(t/\:,l,/2) /\,71/2 sin(t/\:,l,/2)

Ep(t) = e =
o(®) [/\}7/2 sin(t/\},ﬂ) cos(t/\},/z)
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Spatial discretization

The mild solution is:

i) = [

t
A, sin ((t— s)AY?) P d W (s)

L e R
/0 /cos((t )N ?) Py dW(s)

where, for example,

Np,

cos(t/\i/z)v = Zcos (t/Ang) (v, o)) ©h
j=1

and (Anj, ©nj) are eigenpairs of Ap.
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Spatially semidiscrete: approximation of the semigroup
= v(t) = N"Y2sin (tAV/2)f

{Vh,tt( ) hva(t) = w(t) = A, 1240 (t/\i11/2) Ppf

Vh(O) = 0, Vh,t(O) = th
We have, for Kp(t) = A, /2 sin (tAy?) Py — A=1/2sin (tAY2) and r =2,
|Kn(t)F|| < C(t)R?||f]| . initial regularity of order 3”
|Kn(t)F[| < 2[|f|| s "initial regularity of order 0" (stability)
IKn(OfIl < C(OP S Fll g, O<B<3
B — 1 can not be replaced by § — 1 — € for e > 0 (J. Rauch 1985)

Note: [[v(t)[lge < Ifllpn "initial regularity of order 2"
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Spatially semidiscrete: Strong convergence
Theorem. If |[A(P~1)/2Q/2||s < oo for some 3 € [0, 3], then

JE2 —
1Xn,1(8) = Xa (0l 1y 0y < C) W25 [[AED2Q2]| o

Higher order FEM:  O(h"#1), B €[0,r+1].
FEM of order r > 2 are piecewise poly of degree r —1 > 1.

Proof. {f,} an arbitrary ON basis in H°
1Xh,1(2) = X ()7, g oy = E(IXn2(2) = X0 (2)]?)

t 2
:E(H/O K,,(t—s)dW(s)H)
= [ 1)@ 2 s = |37 (=)@ 26 o
k=1

< CONE Y [QVhfns = C(H*S|NO1/2QY2
k=1

2
s

This is from [1].
Time stepping is studied in [3].
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Nonlinear problems

This kind of analysis carries over (with some limitations) to nonlinear
problems

dX + AX dt = F(X)dt + G(X)dW

if the operators F, G are globally Lipschitz in the appropriate senses.
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Nonlinear problems

This kind of analysis carries over (with some limitations) to nonlinear
problems

dX + AXdt = F(X)dt+ G(X)dW
if the operators F, G are globally Lipschitz in the appropriate senses.

For example:

{E(t)}>0 analytic, Tr(Q) < oo
IF(u) = F(W)lm < Cllu = vllu
1(G(u) = G(v)) Q% | 2oy < Cllu— vk

Then we have spatial regularity: L,(2, HW) and temporal regularity:
Holder v/2 in L,(Q2, H) for v € [0,1), p > 2, see [1].
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Nonlinear problems

dX + AXdt = F(X)dt + G(X)dW
For example:

{E(t)}+>0 analytic, Tr(Q) < co
IF(u) = F(V)l[mw < Cllu = vi[n

1(G(u) = G(v)) Q% |l oy < Cllu— viu

Jentzen and Réckner [2] introduced a linear growth bound:

a1 1
IA™ G(u) Q7| co,my < C(L+ [[ullyo-r)
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Nonlinear problems

dX + AXdt = F(X)dt + G(X)dW
For example:

{E(t)}+>0 analytic, Tr(Q) < co
IF(u) = F(V)l[mw < Cllu = vi[n

1
1(6(u) = G(V) Q2 |l cuumy < Cllu = viin
Jentzen and Réckner [2] introduced a linear growth bound:
B-1 1
1A G(u) Q2 |l comy < C(L+ |lullgs-1)

Kruse and L [2] assumed that A is self-adjoint with compact inverse so
that the “special smoothing of order 1" (6) holds.

Then, for 8 €[0,2), p € [1, ),
Xm0y < C

and Holder in t with exponent min(3, g) in L,(Q, H).
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